1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Surface-plasmon enhanced transparent electrodes in organic photovoltaics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/24/10.1063/1.2938089
1.
1.G. Li, V. Shrotriya, Y. Yao, J. S. Huang, and Y. Yang, J. Mater. Chem. 17, 3126 (2007).
http://dx.doi.org/10.1039/b703075b
2.
2.P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, Adv. Mater. (Weinheim, Ger.) 19, 1551 (2007).
http://dx.doi.org/10.1002/adma.200601093
3.
3.J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, Appl. Phys. Lett. 88, 233503 (2006).
http://dx.doi.org/10.1063/1.2210081
4.
4.J. F. Tremblay, Chem. Eng. News 84, 13 (2006).
5.
5.Y. H. Kim, S. H. Lee, J. Noh, and S. H. Han, Thin Solid Films 510, 305 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.08.174
6.
6.W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424, 824 (2003).
http://dx.doi.org/10.1038/nature01937
7.
7.S. Hayashi, K. Kozaru, and K. Yamamoto, Solid State Commun. 79, 763 (1991).
http://dx.doi.org/10.1016/0038-1098(91)90792-T
8.
8.M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, Sol. Energy Mater. Sol. Cells 61, 97 (2000).
http://dx.doi.org/10.1016/S0927-0248(99)00100-2
9.
9.D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
http://dx.doi.org/10.1063/1.1855423
10.
10.J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, Appl. Phys. Lett. 90, 121102 (2007).
http://dx.doi.org/10.1063/1.2714193
11.
11.H. J. Park, D. Vak, Y. Y. Noh, B. Lim, and D. Y. Kim, Appl. Phys. Lett. 90, 161107 (2007).
http://dx.doi.org/10.1063/1.2721134
12.
12.K. Tvingstedt, N. K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, Appl. Phys. Lett. 91, 113514 (2007).
http://dx.doi.org/10.1063/1.2782910
13.
13.A. J. Morfa, K. L. Rowlen, T. H. Reilly III, M. J. Romero, and J. van de Lagemaat, Appl. Phys. Lett. 92, 013504 (2008).
http://dx.doi.org/10.1063/1.2823578
14.
14.B. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys. 96, 7519 (2004).
http://dx.doi.org/10.1063/1.1812589
15.
15.T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).
http://dx.doi.org/10.1038/35570
16.
16.U. Schroter and D. Heitmann, Phys. Rev. B 58, 15419 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.15419
17.
17.S. H. Chang, S. K. Gray, and G. C. Schatz, Opt. Express 13, 3150 (2005).
http://dx.doi.org/10.1364/OPEX.13.003150
18.
18.J. Dintinger, S. Klein, and T. W. Ebbesen, Adv. Mater. (Weinheim, Ger.) 18, 1267 (2006).
http://dx.doi.org/10.1002/adma.200502393
19.
19.J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Kall, Nano Lett. 4, 1003 (2004).
http://dx.doi.org/10.1021/nl0497171
20.
20.T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, J. Phys. Chem. C 111, 1207 (2007).
http://dx.doi.org/10.1021/jp065942q
21.
21.P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, Colloids Surf., A 214, 23 (2003).
http://dx.doi.org/10.1016/S0927-7757(02)00367-9
22.
22.G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, Adv. Funct. Mater. 17, 1636 (2007).
http://dx.doi.org/10.1002/adfm.200600624
23.
23.L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
24.
24.D. W. Sievers, V. Shrotriya, and Y. Yang, J. Appl. Phys. 100, 114509 (2006).
http://dx.doi.org/10.1063/1.2388854
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/24/10.1063/1.2938089
Loading
/content/aip/journal/apl/92/24/10.1063/1.2938089
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/92/24/10.1063/1.2938089
2008-06-17
2014-12-19

Abstract

Random silver nanohole films were created through colloidal lithography techniques and metal vapor deposition. The transparent electrodes were characterized by uv-visible spectroscopy and incorporated into an organic solar cell. The test cells were evaluated for solar power-conversion efficiency and incident photon-to-current conversion efficiency. The incident photon-to-current conversion efficiency spectra displayed evidence that a nanohole film with diameter holes induces surface-plasmon-enhanced photoconversion. The nanohole silverfilms demonstrate a promising route to removing the indium tin oxide transparent electrode that is ubiquitous in organic optoelectronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/24/1.2938089.html;jsessionid=1pbs2dl5nj2il.x-aip-live-02?itemId=/content/aip/journal/apl/92/24/10.1063/1.2938089&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Surface-plasmon enhanced transparent electrodes in organic photovoltaics
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/24/10.1063/1.2938089
10.1063/1.2938089
SEARCH_EXPAND_ITEM