1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Theoretical investigation of the negative differential resistance in squashed molecular device
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/26/10.1063/1.2952493
1.
1.R. P. Andres, T. Bein, M. Dorogi, S. Feng, J. I. Henderson, C. P. Kubiak, W. Mahoney, R. G. Osifchin, and R. Reifenberger, Science 272, 1323 (1996).
http://dx.doi.org/10.1126/science.272.5266.1323
2.
2.T. R. Kelly, H. D. Silva, and R. A. Silva, Nature (London) 401, 150 (1999).
http://dx.doi.org/10.1038/43639
3.
3.J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science 286, 1550 (1999);
http://dx.doi.org/10.1126/science.286.5444.1550
3.J. Chen, W. Wang, M. A. Reed, A. M. Rawlett, D. W. Price, and J. M. Tour, Appl. Phys. Lett. 77, 1224 (2000).
http://dx.doi.org/10.1063/1.1289650
4.
4.D. I. Gittins, D. Bethell, D. J. Schiffrin, and R. J. Nichols, Nature (London) 408, 67 (2000).
http://dx.doi.org/10.1038/35040518
5.
5.L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).
http://dx.doi.org/10.1063/1.1655067
6.
6.Z. K. Tang and X. R. Wang, Appl. Phys. Lett. 68, 3449 (1996).
http://dx.doi.org/10.1063/1.115789
7.
7.X. R. Wang and Q. Niu, Phys. Rev. B 59, R12755 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.R12755
8.
8.X. R. Wang, Y. P. Wang, and Z. Z. Sun, Phys. Rev. B 65, 193402 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.193402
9.
9.J. M. Seminario, A. G. Zacarias, and J. M. Tour, J. Am. Chem. Soc. 122, 3015 (2000).
http://dx.doi.org/10.1021/ja992936h
10.
10.J. Cornil, Y. Karzazi, and J. L. Bredas, J. Am. Chem. Soc. 124, 3516 (2002).
http://dx.doi.org/10.1021/ja017475q
11.
11.J. Taylor, M. Brandbyge, and K. Stokbro, Phys. Rev. B 68, 121101 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.121101
12.
12.M. Q. Long, K. Q. Chen, L. L. Wang, B. S. Zou, and Z. Shuai, Appl. Phys. Lett. 91, 233512 (2007).
http://dx.doi.org/10.1063/1.2822423
13.
13.M. D. Ventra, S. G. Kim, S. T. Pantelides, and N. D. Lang, Phys. Rev. Lett. 86, 288 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.288
14.
14.Y. Luo, C. K. Wang, and Y. Fu, J. Chem. Phys. 117, 10283 (2002).
http://dx.doi.org/10.1063/1.1518962
15.
15.R. Liu, S. H. Ke, H. U. Baranger, and W. Yang, J. Am. Chem. Soc. 128, 6274 (2006).
http://dx.doi.org/10.1021/ja057054z
16.
16.L. Chen, Z. P. Hu, A. D. Zhao, B. Wang, Y. Luo, J. L. Yang, and J. G. Hou, Phys. Rev. Lett. 99, 146803 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.146803
17.
17.X. F. Li, K. Q. Chen, L. L. Wang, M. Q. Long, B. S. Zou, and Z. Shuai, Appl. Phys. Lett. 91, 133511 (2007).
http://dx.doi.org/10.1063/1.2790839
18.
18.H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).
http://dx.doi.org/10.1038/318162a0
19.
19.C. Joachim, J. K. Gimzewski, R. R. Schlittler, and C. Chavy, Phys. Rev. Lett. 74, 2102 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.2102
20.
20.H. K. Park, J. W. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nature (London) 407, 57 (2000).
http://dx.doi.org/10.1038/35024031
21.
21.C. G. Zeng, H. Q. Wang, B. Wang, J. L. Yang, and J. G. Hou, Appl. Phys. Lett. 77, 3595 (2000).
http://dx.doi.org/10.1063/1.1328773
22.
22.J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 121104(R) (2001).
http://dx.doi.org/10.1103/PhysRevB.63.121104
23.
23.J. J. Palacios, Phys. Rev. B 72, 125424 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125424
24.
24.N. Sergueev, A. A. Demkov, and H. Guo, Phys. Rev. B 75, 233418 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.233418
25.
25.C. Joachim, J. K. Gimzewski, and A. Aviram, Nature (London) 408, 541 (2000).
http://dx.doi.org/10.1038/35046000
26.
26.M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165401
27.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/26/10.1063/1.2952493
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic description of the single molecular device: the molecule coupled to two semi-infinite Al electrodes, and the extended molecule consists of (100) three layers of Al slab with 38 atoms per unit cell in the right lead, two layers of Al slab with 25 atoms in the left lead. (b) Schematic description of the squashed molecules. correspond to the distance between two parallel planes on the top and bottom (ideal), 6.0, 5.0, 4.5, and , respectively. (c) is the corresponding top views of M1-M5 shown in (b).

Image of FIG. 2.

Click to view

FIG. 2.

(a) Calculated current as a function of the applied bias for the single molecular device with different . (b1)–(b5) describe the transmission coefficient and the corresponding projection of the density of states (PDOS) for the systems , respectively. The vertical dash-dotted lines stand for the molecular orbitals, and the Fermi levels is set to be the origin of energy.

Image of FIG. 3.

Click to view

FIG. 3.

(a1)–(a3), (b1)–(b3), and (c1)–(c3) describe the transmission coefficient and the corresponding PDOS at different bias voltages for the systems , , and , respectively. (a1)–(a3) correspond to the bias voltages being 0.7, 1.0, and ; (b1)–(b3) correspond to the bias voltages being 0.7, 1.2, and ; and (c1)–(c3) correspond to the bias voltages being 0.8, 0.9, and , respectively. The region between two solid lines is the bias window, and the shaded area denotes the integral area of the bias window.

Loading

Article metrics loading...

/content/aip/journal/apl/92/26/10.1063/1.2952493
2008-07-02
2014-04-25

Abstract

By applying nonequilibrium Green’s function and first-principles calculation, we investigate the transport behavior of squashed molecular devices. The results show that the electronic transportproperties are affected obviously by the deformation of molecule. Negative differential resistance is found in such system and can be tuned by the deformation degree of the molecule. A mechanism for the negative differential resistance behavior is suggested.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/26/1.2952493.html;jsessionid=eva78pfvbwat.x-aip-live-02?itemId=/content/aip/journal/apl/92/26/10.1063/1.2952493&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Theoretical investigation of the negative differential resistance in squashed C60 molecular device
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/26/10.1063/1.2952493
10.1063/1.2952493
SEARCH_EXPAND_ITEM