1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Theoretical investigation of the negative differential resistance in squashed molecular device
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/26/10.1063/1.2952493
1.
1.R. P. Andres, T. Bein, M. Dorogi, S. Feng, J. I. Henderson, C. P. Kubiak, W. Mahoney, R. G. Osifchin, and R. Reifenberger, Science 272, 1323 (1996).
http://dx.doi.org/10.1126/science.272.5266.1323
2.
2.T. R. Kelly, H. D. Silva, and R. A. Silva, Nature (London) 401, 150 (1999).
http://dx.doi.org/10.1038/43639
3.
3.J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science 286, 1550 (1999);
http://dx.doi.org/10.1126/science.286.5444.1550
3.J. Chen, W. Wang, M. A. Reed, A. M. Rawlett, D. W. Price, and J. M. Tour, Appl. Phys. Lett. 77, 1224 (2000).
http://dx.doi.org/10.1063/1.1289650
4.
4.D. I. Gittins, D. Bethell, D. J. Schiffrin, and R. J. Nichols, Nature (London) 408, 67 (2000).
http://dx.doi.org/10.1038/35040518
5.
5.L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).
http://dx.doi.org/10.1063/1.1655067
6.
6.Z. K. Tang and X. R. Wang, Appl. Phys. Lett. 68, 3449 (1996).
http://dx.doi.org/10.1063/1.115789
7.
7.X. R. Wang and Q. Niu, Phys. Rev. B 59, R12755 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.R12755
8.
8.X. R. Wang, Y. P. Wang, and Z. Z. Sun, Phys. Rev. B 65, 193402 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.193402
9.
9.J. M. Seminario, A. G. Zacarias, and J. M. Tour, J. Am. Chem. Soc. 122, 3015 (2000).
http://dx.doi.org/10.1021/ja992936h
10.
10.J. Cornil, Y. Karzazi, and J. L. Bredas, J. Am. Chem. Soc. 124, 3516 (2002).
http://dx.doi.org/10.1021/ja017475q
11.
11.J. Taylor, M. Brandbyge, and K. Stokbro, Phys. Rev. B 68, 121101 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.121101
12.
12.M. Q. Long, K. Q. Chen, L. L. Wang, B. S. Zou, and Z. Shuai, Appl. Phys. Lett. 91, 233512 (2007).
http://dx.doi.org/10.1063/1.2822423
13.
13.M. D. Ventra, S. G. Kim, S. T. Pantelides, and N. D. Lang, Phys. Rev. Lett. 86, 288 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.288
14.
14.Y. Luo, C. K. Wang, and Y. Fu, J. Chem. Phys. 117, 10283 (2002).
http://dx.doi.org/10.1063/1.1518962
15.
15.R. Liu, S. H. Ke, H. U. Baranger, and W. Yang, J. Am. Chem. Soc. 128, 6274 (2006).
http://dx.doi.org/10.1021/ja057054z
16.
16.L. Chen, Z. P. Hu, A. D. Zhao, B. Wang, Y. Luo, J. L. Yang, and J. G. Hou, Phys. Rev. Lett. 99, 146803 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.146803
17.
17.X. F. Li, K. Q. Chen, L. L. Wang, M. Q. Long, B. S. Zou, and Z. Shuai, Appl. Phys. Lett. 91, 133511 (2007).
http://dx.doi.org/10.1063/1.2790839
18.
18.H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).
http://dx.doi.org/10.1038/318162a0
19.
19.C. Joachim, J. K. Gimzewski, R. R. Schlittler, and C. Chavy, Phys. Rev. Lett. 74, 2102 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.2102
20.
20.H. K. Park, J. W. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nature (London) 407, 57 (2000).
http://dx.doi.org/10.1038/35024031
21.
21.C. G. Zeng, H. Q. Wang, B. Wang, J. L. Yang, and J. G. Hou, Appl. Phys. Lett. 77, 3595 (2000).
http://dx.doi.org/10.1063/1.1328773
22.
22.J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 121104(R) (2001).
http://dx.doi.org/10.1103/PhysRevB.63.121104
23.
23.J. J. Palacios, Phys. Rev. B 72, 125424 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125424
24.
24.N. Sergueev, A. A. Demkov, and H. Guo, Phys. Rev. B 75, 233418 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.233418
25.
25.C. Joachim, J. K. Gimzewski, and A. Aviram, Nature (London) 408, 541 (2000).
http://dx.doi.org/10.1038/35046000
26.
26.M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165401
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/26/10.1063/1.2952493
Loading
/content/aip/journal/apl/92/26/10.1063/1.2952493
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/92/26/10.1063/1.2952493
2008-07-02
2014-10-26

Abstract

By applying nonequilibrium Green’s function and first-principles calculation, we investigate the transport behavior of squashed molecular devices. The results show that the electronic transportproperties are affected obviously by the deformation of molecule. Negative differential resistance is found in such system and can be tuned by the deformation degree of the molecule. A mechanism for the negative differential resistance behavior is suggested.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/26/1.2952493.html;jsessionid=3k9lup47q0q35.x-aip-live-02?itemId=/content/aip/journal/apl/92/26/10.1063/1.2952493&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Theoretical investigation of the negative differential resistance in squashed C60 molecular device
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/26/10.1063/1.2952493
10.1063/1.2952493
SEARCH_EXPAND_ITEM