1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Nanophotoswitches with a high on/off ratio based on a structure of indium tin oxide/organic insulator/metal
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/4/10.1063/1.2839291
1.
1.D. Goldhaber-Gordon, M. S. Montemerlo, J. C. Love, G. J. Opiteck, and J. C. Ellenbogen, Proc. IEEE 85, 521 (1997).
http://dx.doi.org/10.1109/5.573739
2.
2.J. M. Tour, Acc. Chem. Res. 33, 791 (2000).
http://dx.doi.org/10.1021/ar0000612
3.
3.Y. Yang, J. Ouyang, L. Ma, R. J.-H. Tseng, and C.-W. Chu, Adv. Funct. Mater. 16, 1001 (2006).
http://dx.doi.org/10.1002/adfm.200500429
4.
4.R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, and Y. Yang, Nat. Nanotechnol. 1, 72 (2006).
http://dx.doi.org/10.1038/nnano.2006.55
5.
5.J. C. Scot and L. D. Bozano, Adv. Mater. (Weinheim, Ger.) 19, 1452 (2007).
http://dx.doi.org/10.1002/adma.200602564
6.
6.S. Baek, D. Lee, J. Kim, S.-H. Hong, O. Kim, and M. Ree, Adv. Funct. Mater. 17, 2637 (2007).
http://dx.doi.org/10.1002/adfm.200600892
7.
7.B. Mukherjee, S. K. Batabyal, and A. J. Pal, Adv. Mater. (Weinheim, Ger.) 19, 717 (2007).
http://dx.doi.org/10.1002/adma.200601490
8.
8.J.-S. Choi, J.-H. Kim, S.-H. Kim, and D. H. Suh, Appl. Phys. Lett. 89, 152111 (2006).
http://dx.doi.org/10.1063/1.2360220
9.
9.R. T. Weitz, A. Walter, R. Engl, R. Sezi, and C. Dehm, Nano Lett. 6, 2810 (2006).
http://dx.doi.org/10.1021/nl0619204
10.
10.C. Ke and H. D. Espinosa, Small 2, 1484 (2006).
http://dx.doi.org/10.1002/smll.200600271
11.
11.T. Shang, F. Yang, W. Zheng, and C. Wang, Small 2, 1007 (2006).
http://dx.doi.org/10.1002/smll.200500533
12.
12.Y. S. Lai, C. H. Tu, D. L. Kwong, and J. S. Chen, Appl. Phys. Lett. 87, 122101 (2005).
http://dx.doi.org/10.1063/1.2051801
13.
13.D. Tondelier, K. Lmimouni, D. Vuillaume, C. Fery, and G. Haas, Appl. Phys. Lett. 85, 5763 (2004).
http://dx.doi.org/10.1063/1.1829166
14.
14.C. N. Lau, D. R. Stewart, R. S. Williams, and M. Bockrath, Nano Lett. 4, 569 (2004).
http://dx.doi.org/10.1021/nl035117a
15.
15.T. Kawai, Y. Nakashima, and M. Irie, Adv. Mater. (Weinheim, Ger.) 17, 309 (2005).
http://dx.doi.org/10.1002/adma.200400191
16.
16.D. Dulić, S. J. van der Molen, T. Kudernac, H. T. Jonkman, J. J. D. de Jong, T. N. Bowden, J. van Esch, B. L. Feringa, and B. J. van Wees, Phys. Rev. Lett. 91, 207402 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.207402
17.
17.A. C. Whalley, M. L. Steigerwald, X. Guo, and C. Nuckolls, J. Am. Chem. Soc. 129, 12590 (2007).
18.
18.X. Guo, D. Zhang, G. Yu, M. Wan, J. Li, Y. Liu, and D. Zhu, Adv. Mater. (Weinheim, Ger.) 16, 636 (2004).
19.
19.X. Guo, L. Huang, S. O’Brien, P. Kim, and C. Nuckolls, J. Am. Chem. Soc. 127, 15045 (2005).
http://dx.doi.org/10.1021/ja054335y
20.
20.H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. (Weinheim, Ger.) 14, 158 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
21.
21.W. Hu, H. Nakashima, K. Furukawa, Y. Kashimura, K. Ajito, Y. Liu, D. Zhu, and K. Torimitsu, J. Am. Chem. Soc. 127, 2804 (2005).
http://dx.doi.org/10.1021/ja0433929
22.
22.A. Star, Y. Lu, K. Bradley, and G. Grüner, Nano Lett. 4, 1587 (2004).
http://dx.doi.org/10.1021/nl049337f
23.
23.J. Borghetti, V. Derycke, S. Lenfant, P. Chenevier, A. Filoramo, M. Goffman, D. Vuillaume, and J.-P. Bourgoin, Adv. Mater. (Weinheim, Ger.) 18, 2535 (2006).
http://dx.doi.org/10.1002/adma.200601138
24.
24.Q. Tang, L. Li, Y. Song, Y. Liu, H. Li, W. Xu, Y. Liu, W. Hu, and D. Zhu, Adv. Mater. (Weinheim, Ger.) 19, 2624 (2007).
http://dx.doi.org/10.1002/adma.200700208
25.
25.D. Basak, and B. Mallik, Synth. Met. 156, 176 (2006).
26.
26.J. Veres, S. Ogier, G. Lloyd, and D. de Leeuw, Chem. Mater. 16, 4543 (2004).
http://dx.doi.org/10.1021/cm049598q
27.
27.X. Z. Yan, and T. Goodson, III, J. Phys. Chem. B 110, 14667 (2006).
28.
28.N. Biyikli, I. Kimukin, B. Butun, O. Aytür, and E. Ozbay, IEEE J. Sel. Top. Quantum Electron. 10, 759 (2004).
http://dx.doi.org/10.1109/JSTQE.2004.833977
29.
29.T. X. Phuoc, Opt. Commun. 245, 27 (2005).
30.
30.G. M. Holtmeier, D. R. Alexander, and J. P. Barton, J. Appl. Phys. 71, 557 (1992).
http://dx.doi.org/10.1063/1.350405
31.
31.C. B. Duke, Tunnelling in Solids (Academic, New York, 1969).
32.
32.P. S. Ho and T. Kwok, Rep. Prog. Phys. 52, 301 (1989).
http://dx.doi.org/10.1088/0034-4885/52/3/002
33.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/4/10.1063/1.2839291
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Current-voltage curve of device I measured at the first run (the activation process) in a dark environment. Inset: device structure of the fabricated photoswitches. (b) Current-voltage curve of device I after activation, which was measured in a dark condition (square), under UV radiation (circle), and after removal of the UV radiation (triangle), respectively. The UV light has a wavelength of and a power density of (which was lowered to when the UV light passed through the ITO glass). (c) Current-voltage curve of device I measured under UV radiation. The inset shows the curve in the range of . (d) Time scales of the switching processes of device I upon exposure to UV light and after removal of UV light (monitored under bias).

Image of FIG. 2.

Click to view

FIG. 2.

Current-voltage curves of (a) device III and (b) device IV, which were measured in the dark condition (square) under UV radiation (circle) and after removal of the UV radiation (triangle), respectively. The UV light has a wavelength of and a power density of (which was lowered to when the UV light passed through the ITO glass).

Image of FIG. 3.

Click to view

FIG. 3.

(a) Sketches that show the mechanism of the photoswitching process in the devices. (b) Force analysis of a metal nanofilament in the photoswitch under both electric fields and UV irradiation.

Tables

Generic image for table

Click to view

Table I.

Photoelectric properties of devices I and II.

Loading

Article metrics loading...

/content/aip/journal/apl/92/4/10.1063/1.2839291
2008-01-30
2014-04-18

Abstract

Highly photosensitive nanoswitches with a structure of indium tin oxide/organic insulator/metal have been fabricated. Electric current in the photoswitches is sensitive to ultraviolet (UV)radiation, and can be inhibited and recovered by exposing the photoswitch to, or shielding it from, UV radiation, respectively. Photoswitches with a very high on/off ratio exceeding , which is the highest ratio recorded for all reported organic photoswitches, have been demonstrated under UV radiation even with a low power density .

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/4/1.2839291.html;jsessionid=2d07l1ae0nn25.x-aip-live-02?itemId=/content/aip/journal/apl/92/4/10.1063/1.2839291&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nanophotoswitches with a high on/off ratio based on a structure of indium tin oxide/organic insulator/metal
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/4/10.1063/1.2839291
10.1063/1.2839291
SEARCH_EXPAND_ITEM