1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Monolithic vertical microcavities based on tetracene single crystals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/6/10.1063/1.2840153
1.
1.M. E. Gershenson, V. Podzorov, and A. F. Morpurgo, Rev. Mod. Phys. 78, 973 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.973
2.
2.A. Wappelt, A. Bergmann, A. Napiwotzki, H. J. Eichler, H. J. Jupner, A. Kummrow, A. Lau, and S. Woggon, J. Appl. Phys. 78, 5192 (1995).
http://dx.doi.org/10.1063/1.359757
3.
3.F. Cicoira, C. Santato, F. Dinelli, M. Murgia, M. A. Loi, F. Biscarini, R. Zamboni, P. Heremans, and M. Muccini, Adv. Funct. Mater. 15, 375 (2005).
http://dx.doi.org/10.1002/adfm.200400278
4.
4.A. L. Briseno, J. Aizenberg, Y. J. Han, R. A. Penkala, H. Moon, A. J. Lovinger, C. Kloc, and Z. Bao, J. Am. Chem. Soc. 127, 12164 (2005).
http://dx.doi.org/10.1021/ja052919u
5.
5.B. Lu, H. J. Zhang, H. Huang, H. Y. Mao, Q. Chen, H. Y. Li, P. He, and S. N. Bao, Appl. Surf. Sci. 245, 208 (2005).
http://dx.doi.org/10.1016/j.apsusc.2004.10.011
6.
6.C. Santato, I. Manunza, A. Bonfiglio, F. Cicoira, P. Cosseddu, R. Zamboni, and M. Muccini, Appl. Phys. Lett. 86, 141106 (2005).
http://dx.doi.org/10.1063/1.1898429
7.
7.S. Soubatch, R. Temirov, M. Weinhold, and F. S. Tautz, Surf. Sci. 600, 4679 (2006).
http://dx.doi.org/10.1016/j.susc.2006.07.039
8.
8.N. Moriguchi, T. Nishikawa, T. Anezaki, A. Unno, M. Tachibana, and K. Kojima, Physica B 376–377, 276 (2006).
9.
9.Y. Xia, V. Kalihari, C. D. Frisbie, N. K. Oh, and J. A. Rogers, Appl. Phys. Lett. 90, 162106 (2007).
http://dx.doi.org/10.1063/1.2724895
10.
10.A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, and H. von Seggern, Phys. Rev. Lett. 91, 157406 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.157406
11.
11.S.-H. Lim, T. G. Bjorklund, F. C. Spano, and C. J. Bardeen, Phys. Rev. Lett. 92, 107402 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.107402
12.
12.M. Voigt, A. Langner, P. Schouwink, J. M. Lupton, R. F. Mahrt, and M. Sokolowski, J. Chem. Phys. 127, 114705 (2007).
http://dx.doi.org/10.1063/1.2766944
13.
13.F. C. Spano, J. Chem. Phys. 120, 7643 (2004).
http://dx.doi.org/10.1063/1.1676250
14.
14.C. Y. Hu, H. Z. Zheng, J. D. Zhang, H. Zhang, F. H. Yang, and Y. P. Zeng, Appl. Phys. Lett. 82, 665 (2003).
http://dx.doi.org/10.1063/1.1542929
15.
15.G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. S. Skolnick, V. N. Astratov, J. S. Roberts, A. V. Kavokin, M. R. Vladimrova, and M. A. Kaliteevsky, Phys. Rev. B 59, 5082 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.5082
16.
16.A. A. Dukin, N. A. Feoktistov, V. G. Golubev, A. V. Medvedev, A. B. Pevtsov, and A. V. Sel’kin, Phys. Rev. E 67, 046602 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.046602
17.
17.Q. Song, L. Liu, T. Ling, L. Xu, and W. Wang, Appl. Phys. Lett. 82, 2939 (2003).
http://dx.doi.org/10.1063/1.1571955
18.
18.T. Virgili, D. G. Lidzey, D. D. C. Bradley, and S. Walker, Synth. Met. 116, 497 (2001).
http://dx.doi.org/10.1016/S0379-6779(00)00422-7
19.
19.L. Persano, E. Mele, R. Cingolani, and D. Pisignano, Appl. Phys. Lett. 87, 031103 (2005).
http://dx.doi.org/10.1063/1.1994956
20.
20.C. Kloc, P. G. Simpkins, T. Siegrist, and R. A. Laudise, J. Cryst. Growth 182, 416 (1997).
http://dx.doi.org/10.1016/S0022-0248(97)00370-9
21.
21.D. Holmes, S. Kumaraswamy, A. J. Matzger, and K. P. C. Vollhardt, Chem.-Eur. J. 5, 3399 (1999).
http://dx.doi.org/10.1002/(SICI)1521-3765(19991105)5:11<3399::AID-CHEM3399>3.0.CO;2-V
22.
22.S. Tavazzi, L. Raimondo, L. Silvestri, P. Spearman, A. Camposeo, M. Polo, and D. Pisignano (unpublished).
23.
23.K. Mizuno, A. Matsui, and G. J. Sloan, J. Phys. Soc. Jpn. 53, 2799 (1984).
http://dx.doi.org/10.1143/JPSJ.53.2799
24.
24.L. Persano, R. Cingolani, and D. Pisignano, J. Vac. Sci. Technol. B 23, 1654 (2005).
http://dx.doi.org/10.1116/1.1990164
25.
25.M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, Semicond. Sci. Technol. 13, 645 (1998).
http://dx.doi.org/10.1088/0268-1242/13/7/003
26.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/6/10.1063/1.2840153
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Polarized absorption spectrum taken at normal incidence (dotted line, left vertical scale) and PL spectrum (solid line, right scale) of TCN single crystals. Left inset: arrangement of the TCN molecules in the unit cell as viewed from the axis. Right inset: measured wavelength behavior of the real (, solid line, left scale) and imaginary (, dotted line, right scale) parts of the crystal refractive index.

Image of FIG. 2.

Click to view

FIG. 2.

Microcavity transmission at normal incidence (dashed line, left vertical scale), and normal PL spectra from a microcavity (continuous line, right scale) and from a TCN crystal on a bottom DBR (dotted line, right scale). Inset: scheme of the TCN microcavity structure.

Image of FIG. 3.

Click to view

FIG. 3.

Angular dependences of the resonance frequencies, extracted by transmission measurements, for TE (full dots) and TM (open circles) polarizations, for a TCN microcavity with crystal thickness . The superimposed continuous lines represent the fitting curves calculated according to Eq. (1). Inset: TE (dotted line) and TM (continuous line) transmission spectra for .

Loading

Article metrics loading...

/content/aip/journal/apl/92/6/10.1063/1.2840153
2008-02-11
2014-04-25

Abstract

The authors report on monolithic, light-emitting vertical microcavities based on an organic semiconductorsingle crystal. The devices are realized by reactive electron-beam deposition of dielectric mirrors and growth of tetracene crystals by physical vapor transport. The microcavities exhibit optical cavity modes in the visible range with full width at half maximum down to , corresponding to a factor of about 200, and polarization-induced modal splitting up to . These results open perspectives for the realization of polarized-emitting optoelectronic devices based on organic crystals.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/6/1.2840153.html;jsessionid=5s8ltlsfirb5e.x-aip-live-06?itemId=/content/aip/journal/apl/92/6/10.1063/1.2840153&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Monolithic vertical microcavities based on tetracene single crystals
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/6/10.1063/1.2840153
10.1063/1.2840153
SEARCH_EXPAND_ITEM