1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Monolithic vertical microcavities based on tetracene single crystals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/6/10.1063/1.2840153
1.
1.M. E. Gershenson, V. Podzorov, and A. F. Morpurgo, Rev. Mod. Phys. 78, 973 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.973
2.
2.A. Wappelt, A. Bergmann, A. Napiwotzki, H. J. Eichler, H. J. Jupner, A. Kummrow, A. Lau, and S. Woggon, J. Appl. Phys. 78, 5192 (1995).
http://dx.doi.org/10.1063/1.359757
3.
3.F. Cicoira, C. Santato, F. Dinelli, M. Murgia, M. A. Loi, F. Biscarini, R. Zamboni, P. Heremans, and M. Muccini, Adv. Funct. Mater. 15, 375 (2005).
http://dx.doi.org/10.1002/adfm.200400278
4.
4.A. L. Briseno, J. Aizenberg, Y. J. Han, R. A. Penkala, H. Moon, A. J. Lovinger, C. Kloc, and Z. Bao, J. Am. Chem. Soc. 127, 12164 (2005).
http://dx.doi.org/10.1021/ja052919u
5.
5.B. Lu, H. J. Zhang, H. Huang, H. Y. Mao, Q. Chen, H. Y. Li, P. He, and S. N. Bao, Appl. Surf. Sci. 245, 208 (2005).
http://dx.doi.org/10.1016/j.apsusc.2004.10.011
6.
6.C. Santato, I. Manunza, A. Bonfiglio, F. Cicoira, P. Cosseddu, R. Zamboni, and M. Muccini, Appl. Phys. Lett. 86, 141106 (2005).
http://dx.doi.org/10.1063/1.1898429
7.
7.S. Soubatch, R. Temirov, M. Weinhold, and F. S. Tautz, Surf. Sci. 600, 4679 (2006).
http://dx.doi.org/10.1016/j.susc.2006.07.039
8.
8.N. Moriguchi, T. Nishikawa, T. Anezaki, A. Unno, M. Tachibana, and K. Kojima, Physica B 376–377, 276 (2006).
9.
9.Y. Xia, V. Kalihari, C. D. Frisbie, N. K. Oh, and J. A. Rogers, Appl. Phys. Lett. 90, 162106 (2007).
http://dx.doi.org/10.1063/1.2724895
10.
10.A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, and H. von Seggern, Phys. Rev. Lett. 91, 157406 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.157406
11.
11.S.-H. Lim, T. G. Bjorklund, F. C. Spano, and C. J. Bardeen, Phys. Rev. Lett. 92, 107402 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.107402
12.
12.M. Voigt, A. Langner, P. Schouwink, J. M. Lupton, R. F. Mahrt, and M. Sokolowski, J. Chem. Phys. 127, 114705 (2007).
http://dx.doi.org/10.1063/1.2766944
13.
13.F. C. Spano, J. Chem. Phys. 120, 7643 (2004).
http://dx.doi.org/10.1063/1.1676250
14.
14.C. Y. Hu, H. Z. Zheng, J. D. Zhang, H. Zhang, F. H. Yang, and Y. P. Zeng, Appl. Phys. Lett. 82, 665 (2003).
http://dx.doi.org/10.1063/1.1542929
15.
15.G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. S. Skolnick, V. N. Astratov, J. S. Roberts, A. V. Kavokin, M. R. Vladimrova, and M. A. Kaliteevsky, Phys. Rev. B 59, 5082 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.5082
16.
16.A. A. Dukin, N. A. Feoktistov, V. G. Golubev, A. V. Medvedev, A. B. Pevtsov, and A. V. Sel’kin, Phys. Rev. E 67, 046602 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.046602
17.
17.Q. Song, L. Liu, T. Ling, L. Xu, and W. Wang, Appl. Phys. Lett. 82, 2939 (2003).
http://dx.doi.org/10.1063/1.1571955
18.
18.T. Virgili, D. G. Lidzey, D. D. C. Bradley, and S. Walker, Synth. Met. 116, 497 (2001).
http://dx.doi.org/10.1016/S0379-6779(00)00422-7
19.
19.L. Persano, E. Mele, R. Cingolani, and D. Pisignano, Appl. Phys. Lett. 87, 031103 (2005).
http://dx.doi.org/10.1063/1.1994956
20.
20.C. Kloc, P. G. Simpkins, T. Siegrist, and R. A. Laudise, J. Cryst. Growth 182, 416 (1997).
http://dx.doi.org/10.1016/S0022-0248(97)00370-9
21.
21.D. Holmes, S. Kumaraswamy, A. J. Matzger, and K. P. C. Vollhardt, Chem.-Eur. J. 5, 3399 (1999).
http://dx.doi.org/10.1002/(SICI)1521-3765(19991105)5:11<3399::AID-CHEM3399>3.0.CO;2-V
22.
22.S. Tavazzi, L. Raimondo, L. Silvestri, P. Spearman, A. Camposeo, M. Polo, and D. Pisignano (unpublished).
23.
23.K. Mizuno, A. Matsui, and G. J. Sloan, J. Phys. Soc. Jpn. 53, 2799 (1984).
http://dx.doi.org/10.1143/JPSJ.53.2799
24.
24.L. Persano, R. Cingolani, and D. Pisignano, J. Vac. Sci. Technol. B 23, 1654 (2005).
http://dx.doi.org/10.1116/1.1990164
25.
25.M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, Semicond. Sci. Technol. 13, 645 (1998).
http://dx.doi.org/10.1088/0268-1242/13/7/003
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/6/10.1063/1.2840153
Loading
/content/aip/journal/apl/92/6/10.1063/1.2840153
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/92/6/10.1063/1.2840153
2008-02-11
2014-12-22

Abstract

The authors report on monolithic, light-emitting vertical microcavities based on an organic semiconductorsingle crystal. The devices are realized by reactive electron-beam deposition of dielectric mirrors and growth of tetracene crystals by physical vapor transport. The microcavities exhibit optical cavity modes in the visible range with full width at half maximum down to , corresponding to a factor of about 200, and polarization-induced modal splitting up to . These results open perspectives for the realization of polarized-emitting optoelectronic devices based on organic crystals.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/6/1.2840153.html;jsessionid=nlui2rh5uji8.x-aip-live-02?itemId=/content/aip/journal/apl/92/6/10.1063/1.2840153&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Monolithic vertical microcavities based on tetracene single crystals
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/6/10.1063/1.2840153
10.1063/1.2840153
SEARCH_EXPAND_ITEM