1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Two-photon energy transfer enhanced three-dimensional optical memory in quantum-dot and azo-dye doped polymers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/6/10.1063/1.2857497
1.
1.D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
http://dx.doi.org/10.1126/science.245.4920.843
2.
2.J. H. Strickler and W. W. Webb, Opt. Lett. 16, 1780 (1991).
3.
3.D. Day and M. Gu, Appl. Opts. 37, 6299 (1998).
4.
4.S. Kawata and Y. Kawata, Chem. Rev. (Washington, D.C.) 100, 1777 (2000).
http://dx.doi.org/10.1021/cr980073p
5.
5.A. Torumim, S. Kawata, and M. Gu, Opt. Lett. 23, 1924 (1998).
6.
6.C. C. Corredor, Z. L. Huang, and K. D. Adv. Mater. (Weinheim, Ger.) 18, 2910 (2006).
7.
7.D. Gindre, A. Boeglin, A. Fort, L. Mager, and K. D. Dorkenoo, Opt. Express 14, 9896 (2006).
http://dx.doi.org/10.1364/OE.14.009896
8.
8.D. Day, M. Gu, and A. Smallridge, Opt. Lett. 24, 948 (1999).
9.
9.D. Day, M. Gu, and A. Smallridge, Topics in Applied Physics (Springer, Heidelberg, 2003).
10.
10.D. McPhail and M. Gu, Appl. Phys. Lett. 81, 1160 (2002).
http://dx.doi.org/10.1063/1.1499988
11.
11.I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, Nat. Mater. 2, 630 (2003).
http://dx.doi.org/10.1038/nmat961
12.
12.A. R. Clapp, I. L. Medintz, H. Tetsuo Uyeda, B. R. Fisher, E. R. Goldman, M. G. Bawendi, and H. Mattoussi, J. Am. Chem. Soc. 127, 18212 (2005).
http://dx.doi.org/10.1021/ja054630i
13.
13.A. P. Alivisatos, Science 271, 933 (1996).
http://dx.doi.org/10.1126/science.271.5251.933
14.
14.M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science 281, 2013 (1998).
http://dx.doi.org/10.1126/science.281.5385.2013
15.
15.M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, Appl. Phys. Lett. 85, 351 (2004).
http://dx.doi.org/10.1063/1.1772522
16.
16.M. Irie, Chem. Rev. (Washington, D.C.) 100, 1685 (2000).
http://dx.doi.org/10.1021/cr980069d
17.
17.D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, Science 300, 1434 (2003).
http://dx.doi.org/10.1126/science.1083780
18.
18.W. W. Yu and X. Peng, Angew. Chem., Int. Ed. 41, 2368 (2002).
http://dx.doi.org/10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G
19.
19.J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, Appl. Phys. Lett. 84, 4472 (2004).
http://dx.doi.org/10.1063/1.1755420
20.
20.J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
21.
21.H. Ishitobi, Z. Sekkat, and S. Kawata, J. Opt. Soc. Am. B 23, 868 (2006).
http://dx.doi.org/10.1364/JOSAB.23.000868
22.
22.M. Gu, Advanced Optical Imaging Theory (Springer, Heidelberg, 2000).
23.
23.T. Hattori, T. Shibata, S. Onodera, and T. Kaino, J. Appl. Phys. 87, 3240 (2000).
http://dx.doi.org/10.1063/1.372330
24.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/6/10.1063/1.2857497
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Absorbance of prepared CdS QDs. (b) Relative fluorescence intensity of CdS 366 (green), CdS 441 (red), and CdS 433 (blue), respectively, as well the overlapping with the absorption spectrum of DR1 (black). (c) Calculated Förster distance using the standard Förster formula.

Image of FIG. 2.

Click to view

FIG. 2.

Time evolution of normalized absorbance change of DR1 molecules when the polarization directions of the probe beam are parallel (a) and perpendicular (b) to the pump irradiation polarization direction, respectively. The black dots, green empty triangles, red filled triangles, and blue cross correspond to samples without QDs, with CdS 366, CdS 441, and CdS 433, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

DIC readout. (a) DIC images of recorded bits. (b) Readout contrast as a function of the recording power. The black dots, green empty triangles, red filled triangles, and blue cross correspond to samples without QDs, with CdS 366, CdS 441, and CdS 433, respectively. The scale bar is .

Image of FIG. 4.

Click to view

FIG. 4.

Demonstration of 3D optical memory. (a) DIC image of recorded bits of DR1-EH without QDs and with CdS 433 doping in PS. Scale bar is . (b) Readout contrast as a function of the recording power. (c)–(e) demonstrate letters I, E, and C recorded in the first, second, and third layers, respectively.

Loading

Article metrics loading...

/content/aip/journal/apl/92/6/10.1063/1.2857497
2008-02-15
2014-04-18

Abstract

A three-dimensional bit-by-bit optical memory system in quantum-dot and azo-dye doped polymers is demonstrated in this paper. It is shown that two-photon absorption can be used to excite resonance energy transfer from luminescent CdS quantum dots to azo-dye molecules. As a result, the isomerization of azo-dye molecules leads to a pronounced refractive index change. This two-photon-excited energy transfer process in the quantum-dot and azo-dye polymer not only allows for high efficient multilayer information recording into the volume of thick samples but also offers a refractive index window for readout.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/6/1.2857497.html;jsessionid=og8nc2d3dl9c.x-aip-live-03?itemId=/content/aip/journal/apl/92/6/10.1063/1.2857497&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Two-photon energy transfer enhanced three-dimensional optical memory in quantum-dot and azo-dye doped polymers
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/6/10.1063/1.2857497
10.1063/1.2857497
SEARCH_EXPAND_ITEM