1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electroluminescence imaging and microstructure of organic light-emitting field-effect transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/7/10.1063/1.2836790
1.
1.N. Corcoran, A. C. Arias, J. S. Kim, J. D. MacKenzie, and R. H. Friend, Appl. Phys. Lett. 82, 299 (2003).
http://dx.doi.org/10.1063/1.1537049
2.
2.A. C. Morteani, A. S. Dhoot, J. S. Kim, C. Silva, N. C. Greenham, C. Murphy, E. Moons, S. Cina, J. H. Burroughes, and R. H. Friend, Adv. Mater. (Weinheim, Ger.) 15, 1708 (2003).
http://dx.doi.org/10.1002/adma.200305618
3.
3.L. H. Nguyen, H. Hoppe, T. Erb, S. Gunes, G. Gobsch, and N. S. Sariciftci, Adv. Funct. Mater. 17, 1071 (2007).
http://dx.doi.org/10.1002/adfm.200601038
4.
4.D. C. Coffey, O. G. Reid, D. B. Rodovsky, G. P. Bartholomew, and D. S. Ginger, Nano Lett. 7, 738 (2007).
http://dx.doi.org/10.1021/nl062989e
5.
5.E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Nat. Mater. 2, 678 (2003).
http://dx.doi.org/10.1038/nmat978
6.
6.M. A. Loi, C. Rost-Bietsch, M. Murgia, S. Karg, W. Riess, and M. Muccini, Adv. Funct. Mater. 16, 41 (2006).
http://dx.doi.org/10.1002/adfm.200500424
7.
7.R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. S. Liu, J. M. J. Frechet, and M. F. Toney, Macromolecules 38, 3312 (2005).
http://dx.doi.org/10.1021/ma047415f
8.
8.K. C. Dickey, J. E. Anthony, and Y. L. Loo, Adv. Mater. (Weinheim, Ger.) 18, 1721 (2006).
http://dx.doi.org/10.1002/adma.200600188
9.
9.E. Lunedei, P. Moretti, H. Murgia, M. Muccini, F. Biscarini, and C. Taliani, Synth. Met. 101, 592 (1999).
http://dx.doi.org/10.1016/S0379-6779(98)01148-5
10.
10.M. Schneider, M. Brinkmann, M. Muccini, F. Biscarini, C. Taliani, W. Gebauer, M. Sokolowski, and E. Umbach, Chem. Phys. 285, 345 (2002).
http://dx.doi.org/10.1016/S0301-0104(02)00819-4
11.
11.E. M. Muller and J. A. Marohn, Adv. Mater. (Weinheim, Ger.) 17, 1410 (2005).
http://dx.doi.org/10.1002/adma.200401174
12.
12.L. Burgi, T. Richards, M. Chiesa, R. H. Friend, and H. Sirringhaus, Synth. Met. 146, 297 (2004).
http://dx.doi.org/10.1016/j.synthmet.2004.08.009
13.
13.L. S. C. Pingree, M. C. Hersam, M. M. Kern, B. J. Scott, and T. J. Marks, Appl. Phys. Lett. 85, 344 (2004).
http://dx.doi.org/10.1063/1.1765206
14.
14.G. M. Credo, D. L. Winn, and S. K. Buratto, Chem. Mater. 13, 1258 (2001).
http://dx.doi.org/10.1021/cm000672o
15.
15.M. Muccini, Nat. Mater. 5, 605 (2006).
http://dx.doi.org/10.1038/nmat1699
16.
16.J. Zaumseil, R. H. Friend, and H. Sirringhaus, Nat. Mater. 5, 69 (2006).
http://dx.doi.org/10.1038/nmat1537
17.
17.J. S. Swensen, C. Soci, and A. J. Heeger, Appl. Phys. Lett. 87, 253511 (2005).
http://dx.doi.org/10.1063/1.2149986
18.
18.J. Zaumseil, C. L. Donley, J. S. Kim, R. H. Friend, and H. Sirringhaus, Adv. Mater. (Weinheim, Ger.) 18, 2708 (2006).
http://dx.doi.org/10.1002/adma.200601080
19.
19.C. L. Donley, J. Zaumseil, J. W. Andreasen, M. M. Nielsen, H. Sirringhaus, R. H. Friend, and J. S. Kim, J. Am. Chem. Soc. 127, 12890 (2005).
http://dx.doi.org/10.1021/ja051891j
20.
20.M. J. Banach, R. H. Friend, and H. Sirringhaus, Macromolecules 36, 2838 (2003).
http://dx.doi.org/10.1021/ma021607y
21.
21.Certain equipment, instruments, or materials are identified in this paper in order to adequately specify the experimental details. Such identification does not imply recommendation by the National Institute of Standards and Technology nor does it imply the materials are necessarily the best available for the purpose.
22.
22.See EPAPS Document No. for additional experimental details and results. This document can be reached through a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps. html).[Supplementary Material]
23.
23.H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell, and D. D. C. Bradley, Appl. Phys. Lett. 77, 406 (2000).
http://dx.doi.org/10.1063/1.126991
24.
24.Z. J. Zheng, K. H. Yim, M. S. M. Saifullah, M. E. Welland, R. H. Friend, J. S. Kim, and W. T. S. Huck, Nano Lett. 7, 987 (2007).
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/7/10.1063/1.2836790
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Transfer characteristics (forward and reverse) of a LFET with bottom contact gold electrodes (, ), polycrystalline F8BT , PMMA (Polymer Source, Inc.) gate dielectric (, ), and gold top gate electrode (inset: schematic structure). Saturation hole and electron mobilities were and , respectively. Optical image of emission zone of (b) polycrystalline and of (c) amorphous F8BT-LFETs.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Optical image of emission zone in polycrystalline F8BT-LFET with interdigitated source/drain electrodes. (b) EL map produced by overlaying a series of images during a sweep. Note that changes during a sweep, leading to slightly higher intensities toward the electrode edges. PL images of the same region (same length scale) as in (a) and (b): (c) without polarizer and (d) with polarizer parallel to charge transport direction.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Transfer characteristics (forward and reverse) of LFET with partially aligned F8BT, , , and . Saturation hole and electron mobilities were and , respectively. (b) Optical image of emission zone and (c) accumulative EL image of this LFET.

Loading

Article metrics loading...

/content/aip/journal/apl/92/7/10.1063/1.2836790
2008-02-20
2014-04-21

Abstract

The effect of morphology and microstructure on the emission characteristics of ambipolar light-emitting field-effect transistors is studied using the polyfluorene copolymer F8BT [poly(9,9-di--octylfluorene-alt-benzothiadiazole)] as a model system. Different intensity distributions of the emission zones of amorphous, polycrystalline, and aligned F8BT films are demonstrated. Electroluminescence maps of the channel region are produced by overlaying a series of images recorded during gate voltage sweeps. They show a correlation to the microcrystalline structure of the F8BT and are assumed to visualize the current density distribution within the transistor channel.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/7/1.2836790.html;jsessionid=1i3tbv31ed5op.x-aip-live-01?itemId=/content/aip/journal/apl/92/7/10.1063/1.2836790&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electroluminescence imaging and microstructure of organic light-emitting field-effect transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/7/10.1063/1.2836790
10.1063/1.2836790
SEARCH_EXPAND_ITEM