1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Distinct band gaps and isotropy combined in icosahedral band gap materials
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/7/10.1063/1.2884319
1.
1.M. Sigalas, M. S. Kushwaha, E. N. Economou, M. Kafesaki, I. E. Psarobas, and W. Steurer, Z. Kristallogr. 220, 765 (2005).
http://dx.doi.org/10.1524/zkri.2005.220.9-10.765
2.
2.W. Steurer and D. Sutter-Widmer, J. Phys. D 40, R229 (2007).
http://dx.doi.org/10.1088/0022-3727/40/13/R01
3.
3.C. Rockstuhl, U. Peschel, and F. Lederer, Opt. Lett. 31, 1741 (2006).
http://dx.doi.org/10.1364/OL.31.001741
4.
4.D. Sutter-Widmer and W. Steurer, Phys. Rev. B 75, 134303 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.134303
5.
5.M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. DeLa Rue, and P. Millar, Nanotechnology 11, 274 (2000).
http://dx.doi.org/10.1088/0957-4484/11/4/316
6.
6.D. Sutter-Widmer, S. Deloudi, and W. Steurer, Phys. Rev. B 75, 094304 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.094304
7.
7.W. Steurer and T. Haibach, Acta Crystallogr., Sect. A: Found. Crystallogr. 55, 48 (1999).
http://dx.doi.org/10.1107/S0108767398007272
8.
8.M. Duneau and M. Audier, Acta Crystallogr., Sect. A: Found. Crystallogr. 55, 746 (1999).
9.
9.S. K. Cheung, T. L. Chan, Z. Q. Zhang, and C. T. Chan, Phys. Rev. B 70, 125104 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.125104
10.
10.W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, Nature (London) 436, 993 (2005).
http://dx.doi.org/10.1038/nature03977
11.
11.Y. Roichman and D. G. Grier, Opt. Express 13, 5434 (2005).
http://dx.doi.org/10.1364/OPEX.13.005434
12.
12.A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, Nat. Mater. 5, 942 (2006).
http://dx.doi.org/10.1038/nmat1786
13.
13.W. Y. Tam, Appl. Phys. Lett. 89, 251111 (2006).
http://dx.doi.org/10.1063/1.2408651
14.
14.J. Xu, R. Ma, X. Wang, and W. Y. Tam, Opt. Express 15, 4287 (2006).
http://dx.doi.org/10.1364/OE.15.004287
15.
15.J. E. S. Socolar and P. J. Steinhardt, Phys. Rev. B 34, 617 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.617
16.
16.R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, Comput. Phys. Commun. 166, 197 (2005).
http://dx.doi.org/10.1016/j.cpc.2004.11.004
17.
17.R. Sainidou, N. Stefanou, and A. Modinos, Phys. Rev. B 66, 212301 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.212301
18.
18.E. N. Economou, Green’s Functions in Quantum Physics (Springer, Berlin, 1979).
19.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/7/10.1063/1.2884319
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The icosahedral tiling modulo the unit cell of the PAS results in point sets circumscribed by triacontahedra on a fcc lattice (a). The QPNC consisting of steel beads in polyester (b). Shapes of the (pseudo) zone boundaries of the fcc (c) and the icosahedral (d) structures. Experimental longitudinal wave transmission spectra of the QPNC along a twofold axis (solid line) and its APNC for the [100] direction (dashed line) (e). Calculated band structure of the APNC along the [100] direction (f). Transmission (dashed line) and reflection (dotted line) spectra for shear waves for the APNC (g) and QPNC (h) [directions as in (e)]. The shaded regions in (e)–(g) denote the frequency ranges of the longitudinal hybridization and the shear Bragg gaps.

Loading

Article metrics loading...

/content/aip/journal/apl/92/7/10.1063/1.2884319
2008-02-21
2014-04-24

Abstract

Icosahedral band gap materials (BGMs) optimally combine the distinct band gaps of periodic BGMs with the high rotational symmetry of quasiperiodic structures. This is shown experimentally for longitudinal and transverse polarized elastic waves in a phononic crystal based on the three-dimensional Penrose tiling (3D-PT) and applies equally to photonic crystals. The ability of icosahedral BGMs to form Bragg-type band gaps follows from the similarity between the 3D-PT and the face-centered cubic structure (its periodic average structure). The 3D quasiperiodic BGM lacks bands of strong transmission like random or disordered BGMs but shows clear band gaps like periodic BGMs do.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/7/1.2884319.html;jsessionid=5o5qi594ndap3.x-aip-live-01?itemId=/content/aip/journal/apl/92/7/10.1063/1.2884319&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Distinct band gaps and isotropy combined in icosahedral band gap materials
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/7/10.1063/1.2884319
10.1063/1.2884319
SEARCH_EXPAND_ITEM