1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Interface modification for highly efficient organic photovoltaics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/9/10.1063/1.2885724
1.
1.C. J. Brabec, J. A. Hauch, P. Schilinsky, and C. Waldauf, MRS Bull. 30, 50 (2005).
2.
2.N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992);
http://dx.doi.org/10.1126/science.258.5087.1474
2.J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, Nature (London) 376, 498 (1995);
http://dx.doi.org/10.1038/376498a0
2.G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
3.
3.C. Hoth, S. A. Choulis, P. Schilinsky, and C. J. Brabec, Adv. Mater. (Weinheim, Ger.) 19, 3973 (2007).
http://dx.doi.org/10.1002/adma.200700911
4.
4.Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, and M. Ree, Nat. Mater. 5, 197 (2006).
http://dx.doi.org/10.1038/nmat1574
5.
5.W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 18, 572 (2006);
5.G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005);
http://dx.doi.org/10.1038/nmat1500
5.S. Curran and D. L. Carroll, Org. Lett. 7, 5749 (2005).
http://dx.doi.org/10.1021/ol051950y
6.
6.Y. Salin, S. Alem, R. de Bettignies, and J.-M. Nunzi, Thin Solid Films 476, 340 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.10.018
7.
7.M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, Thin Solid Films 491, 298 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.06.006
8.
8.G. Li, C.-W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Appl. Phys. Lett. 88, 253503 (2006).
http://dx.doi.org/10.1063/1.2212270
9.
9.M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley , Appl. Phys. Lett. 89, 143517 (2006).
http://dx.doi.org/10.1063/1.2359579
10.
10.C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, Appl. Phys. Lett. 89, 233517 (2006).
http://dx.doi.org/10.1063/1.2402890
11.
11.J. Gilot, M. M. Wienk, and R. A. J. Janseeb, Appl. Phys. Lett. 90, 143512 (2007).
http://dx.doi.org/10.1063/1.2719668
12.
12.C. Waldauf, M. C. Scharber, P. Schilinsky, J. A. Hauch, and C. J. Brabec, J. Appl. Phys. 99, 104503 (2006).
http://dx.doi.org/10.1063/1.2198930
13.
13.P. Schilinsky, Ph.D. thesis, University of Oldenburg, 2005.
14.
14.S. A. Choulis, V.-E. Choong, A. Patwardhan, M. K. Mathai, and F. So, Adv. Funct. Mater. 16, 1075 (2006).
http://dx.doi.org/10.1002/adfm.200500443
15.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/9/10.1063/1.2885724
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Device structure of the inverted solar cell using stacking of solution-processed organic (PTE) and metal oxide interfacial layers as electron selective bottom contact.

Image of FIG. 2.

Click to view

FIG. 2.

Upper plot (a) representative dark current density–voltage characteristics of the solar cells under study in the voltage range representing the opening of the diode. The data are plotted in a logarithmic-linear plot representation. Bottom plot (b) current density–voltage characteristics of the solar cells studied under illumination with UV light illumination (filled symbols) and without UV illumination (open sympols).

Image of FIG. 3.

Click to view

FIG. 3.

Comparison of the (a) power conversion efficiency, (b) fill factor (FF), (c) open circuit voltage , and (d) short circuit current density for the solar cells under study. Data are presented in box plots. The horizontal lines in the box denote the 25th, 50th, and 75th percentile values. The error bars denote the 5th and 95th percentile values. The two symbols below and above the 5th/95th percentile error bar denote the highest and the lowest observed values, respectively. The open square inside the box denotes the mean value. The height of the box is the measure for the tolerance.

Image of FIG. 4.

Click to view

FIG. 4.

Topographic atomic force microscope image (contact mode) of the surface when is coated on the top of ITO (a) and on the top of PTE (b). The scan range was .

Loading

Article metrics loading...

/content/aip/journal/apl/92/9/10.1063/1.2885724
2008-03-04
2014-04-19

Abstract

We present highly efficient inverted polymer:fullerene bulk-heterojunction solar cells by incorporation of a nanoscale organic interfacial layer between the indium tin oxide (ITO) and the metal oxide electron-conducting layer. We demonstrate that stacking of solution-processed organic and metal oxide interfacial layers gives highly charged selective low ohmic cathodes. The incorporation of a polyoxyethylene tridecyl ether interfacial layer between ITO and solution-processed titanium oxide raised the power conversion efficiency of inverted organic photovoltaics to 3.6%, an improvement of around 15% in their performance over comparable devices without the organic interfacial layer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/9/1.2885724.html;jsessionid=5eokgpdaina8.x-aip-live-03?itemId=/content/aip/journal/apl/92/9/10.1063/1.2885724&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Interface modification for highly efficient organic photovoltaics
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/9/10.1063/1.2885724
10.1063/1.2885724
SEARCH_EXPAND_ITEM