1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Solution-processible high-permittivity nanocomposite gate insulators for organic field-effect transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/1/10.1063/1.2949320
1.
1.A. Maliakal, in Dielectric Materials: Selection and Design, edited by Z. Bao and J. Locklin (CRC, Boca Raton, 2007), p. 229.
2.
2.N. Koch, ChemPhysChem 8, 1438 (2007).
http://dx.doi.org/10.1002/cphc.200700177
3.
3.A. Facchetti, M.-H. Yoon, and T. J. Marks, Adv. Mater. (Weinheim, Ger.) 17, 1705 (2005).
http://dx.doi.org/10.1002/adma.200500517
4.
4.F.-C. Chen, C.-W. Chu, J. He, Y. Yang, and J.-L. Lin, Appl. Phys. Lett. 85, 3295 (2004).
http://dx.doi.org/10.1063/1.1806283
5.
5.K.-K. Han, S. W. Lee, and H. H. Lee, Appl. Phys. Lett. 88, 233509 (2006).
http://dx.doi.org/10.1063/1.2205757
6.
6.C. Jung, A. Maliakal, A. Sidorenko, and T. Siegrist, Appl. Phys. Lett. 90, 062111 (2007).
http://dx.doi.org/10.1063/1.2450660
7.
7.A. Maliakal, H. Katz, P. M. Cotts, S. Subramoney, and P. Mirau, J. Am. Chem. Soc. 127, 14655 (2005).
http://dx.doi.org/10.1021/ja052035a
8.
8.R. Schroeder, L. A. Majewski, and M. Grell, Adv. Mater. (Weinheim, Ger.) 17, 1535 (2005).
http://dx.doi.org/10.1002/adma.200401398
9.
9.B. Stadlober, M. Zirkl, M. Beutl, G. Leising, S. Bauer-Gogonea, and S. Bauer, Appl. Phys. Lett. 86, 242902 (2005).
http://dx.doi.org/10.1063/1.1946190
10.
10.X.-H. Zhang, B. Demercq, X. Wang, S. Yoo, T. Kondo, Z. L. Wang, and B. Kippelen, Org. Electron. 8, 718 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.06.009
11.
11.F.-C. Chen, C.-S. Chuang, Y.-S. Lin, L.-J. Kung, T.-H. Chen, and H.-P. D. Shieh, Org. Electron. 7, 435 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.06.009
12.
12.M. Kitamura and Y. Arakawa, Appl. Phys. Lett. 89, 223525 (2006).
http://dx.doi.org/10.1063/1.2400399
13.
13.Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho, Appl. Phys. Lett. 87, 152105 (2005).
http://dx.doi.org/10.1063/1.2093940
14.
14.H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and W. Radlik, J. Appl. Phys. 92, 5259 (2002).
http://dx.doi.org/10.1063/1.1511826
15.
15.P. Kim, S. C. Jones, P. J. Hotchkiss, J. N. Haddock, B. Kippelen, S. R. Marder, and J. W. Perry, Adv. Mater. (Weinheim, Ger.) 19, 1001 (2007).
http://dx.doi.org/10.1002/adma.200602422
16.
16.S. E. Fritz, T. W. Kelly, and C. D. Frisbie, J. Phys. Chem. B 109, 10574 (2005).
http://dx.doi.org/10.1021/jp044318f
17.
17.Due to the residual hydroxyl groups present in PVP, it may not be applicable to -type semiconductors.
18.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/1/10.1063/1.2949320
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic of PEGPA-BT:PVP nanocomposite preparation and the structure of OFET devices fabricated.

Image of FIG. 2.

Click to view

FIG. 2.

Left: SEM images of PEGPA-BT:PVP nanocomposite thin films with nanoparticle volume fractions of (a), (b), and (c), respectively. film of unmodified BT (d) is shown for comparison. Scale bars represent . Right: comparison of the leakage current densities of nanocomposite thin films containing of surface-modified BT (circle, , ) and unmodified BT (triangle, , ).

Image of FIG. 3.

Click to view

FIG. 3.

AFM height images of gate insulator surfaces (top row) and pentacene layer deposited on each surface (bottom row). (a) Pure PVP. [(b)–(d)] PEGPA-BT:PVP nanocomposites with 16, 28, and BT, respectively. (e) PEGPA-BT:PVP nanocomposite with a planarization layer of pure PVP. Image , , except for pure PVP .

Image of FIG. 4.

Click to view

FIG. 4.

OFET transfer characteristics obtained from the devices (, for NC only and for NC/PVP) fabricated on PEGPA-BT in PVP nanocomposite gate insulators without a planarizing layer (triangle) and with a planarizing layer (circle).

Tables

Generic image for table

Click to view

Table I.

Properties of PEGPA-BT:PVP nanocomposite thin films. C: capacitance density, : average leakage current density measured over , : charge mobility. RMS roughness is from a area (for pure PVP, ).

Generic image for table

Click to view

Table II.

Summary of the OFET device characteristics described in Fig. 4. rms roughness from a scan area.

Loading

Article metrics loading...

/content/aip/journal/apl/93/1/10.1063/1.2949320
2008-07-08
2014-04-21

Abstract

We report on solution-processible high permittivitynanocomposite gate insulators based on nanoparticles, surface-modified with a phosphonic acid, in poly(4-vinylphenol) for organic field-effect transistors. The use of surface-modified nanoparticles affords high quality nanocomposite thin films at large nanoparticle volume fractions (up to ) with a large capacitance density and a low leakage current. The fabricated pentacene field-effect transistors using these nanocomposites show a large on/off current ratio ( ) due to the high capacitance density and small leakage current of the gate insulator.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/1/1.2949320.html;jsessionid=9aifa99at5df4.x-aip-live-06?itemId=/content/aip/journal/apl/93/1/10.1063/1.2949320&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Solution-processible high-permittivity nanocomposite gate insulators for organic field-effect transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/1/10.1063/1.2949320
10.1063/1.2949320
SEARCH_EXPAND_ITEM