1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/12/10.1063/1.2988287
1.
1.P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
2.
2.J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, Nature (London) 376, 498 (1995).
http://dx.doi.org/10.1038/376498a0
3.
3.G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
4.
4.P. Peumans, S. Uchida, and S. R. Forrest, Nature (London) 425, 158 (2003).
http://dx.doi.org/10.1038/nature01949
5.
5.J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, Adv. Mater. (Weinheim, Ger.) 17, 66 (2005).
http://dx.doi.org/10.1002/adma.200400617
6.
6.Y. Shao and Y. Yang, Adv. Mater. (Weinheim, Ger.) 17, 2841 (2005).
7.
7.R. H. Ritchie, Phys. Rev. 106, 874 (1957).
http://dx.doi.org/10.1103/PhysRev.106.874
8.
8.W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424, 824 (2003).
http://dx.doi.org/10.1038/nature01937
9.
9.O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, Sol. Energy Mater. Sol. Cells 37, 337 (1995).
http://dx.doi.org/10.1016/0927-0248(95)00027-5
10.
10.B. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys. 96, 7519 (2004).
http://dx.doi.org/10.1063/1.1812589
11.
11.T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, Appl. Phys. Lett. 91, 093506 (2007).
http://dx.doi.org/10.1063/1.2772173
12.
12.N. C. Lindquist, A. Lesuffleur, and S. Oh, Appl. Phys. Lett. 91, 253105 (2007).
http://dx.doi.org/10.1063/1.2825587
13.
13.R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, J. Opt. Soc. Am. A 21, 2442 (2004).
http://dx.doi.org/10.1364/JOSAA.21.002442
14.
14.H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 097401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.097401
15.
15.T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).
http://dx.doi.org/10.1038/35570
16.
16.S. Collin, F. Pardo, R. Teissier, and J. Pelouard, Appl. Phys. Lett. 85, 194 (2004).
http://dx.doi.org/10.1063/1.1771467
17.
17.T. H. Reilly III, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, Appl. Phys. Lett. 92, 243304 (2008).
http://dx.doi.org/10.1063/1.2938089
18.
18.B. P. Rand, J. Li, J. Xue, R. J. Holmes, M. E. Thompson, and S. R. Forrest, Adv. Mater. (Weinheim, Ger.) 17, 2714 (2005).
http://dx.doi.org/10.1002/adma.200500816
19.
19.J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, Appl. Phys. Lett. 90, 121102 (2007).
http://dx.doi.org/10.1063/1.2714193
20.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/12/10.1063/1.2988287
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Scanning electron micrographs of the patterned Ag anode. The pattern has a period of and a slit width of , defining nanocavities of wide. (b) Open-circuit voltage and fill factor (FF) for patterned and unpatterned devices. (c) Responsivity and power conversion efficiency showing a 3.2-fold increase in at illumination.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Simulated power enhancement in the absorptive active layers. (b) Ratio of patterned to unpatterned device external quantum efficiency . The spectral features of the experiment and simulation are in close agreement.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Time-averaged intensity map of the plasmonic field (-component of the electric field) at . Optical energy is tightly confined and enhanced in the organic active layers as a SP standing wave between the patterned Ag anode and the Al cathode. Dashed lines indicate where cross sections of the electric field intensity are taken. (b) Cross sections of the electric field intensity through the device.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Responsivity versus polarization for devices with unpatterned and patterned Ag anodes. The patterned area has a diameter of , and in both cases the cathode defines a total active area in diameter. Patterned devices show a maximum responsivity when incident light is polarized perpendicular to the Ag grating. (b) Device absorption spectra under excitation by TM and TE polarized light. With TM polarization, the nanocavity mode is observed at . Under TE polarized illumination, SP modes are not excited leading to reduced absorption.

Loading

Article metrics loading...

/content/aip/journal/apl/93/12/10.1063/1.2988287
2008-09-23
2014-04-17

Abstract

We demonstrate enhanced power conversion efficiency in organic photovoltaic (OPV) cells incorporated into a plasmonic nanocavity array. The nanocavity array is formed between a patternedAganode and an unpatterned Al cathode. This structure leads to the confinement of optical energy and enhanced absorption in the OPV. Devices characterized under simulated solar illumination show a 3.2-fold increase in power conversion efficiency compared to OPVs with unpatterned Aganodes. The observed enhancement is also reflected in the external quantum efficiency, and the spectral response is consistent with optical finite-difference time-domain simulations of the structure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/12/1.2988287.html;jsessionid=3t7vb9omsvj3n.x-aip-live-06?itemId=/content/aip/journal/apl/93/12/10.1063/1.2988287&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/12/10.1063/1.2988287
10.1063/1.2988287
SEARCH_EXPAND_ITEM