1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Degradation studies on high-voltage-driven organic light-emitting device using in situ on-operation method with scanning photoelectron microscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/13/10.1063/1.2994668
1.
1.J. Lee, J. S. Lim, H. J. Shin, and Y. Park, Appl. Phys. Lett. 91, 261902 (2007).
http://dx.doi.org/10.1063/1.2824464
2.
2.C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, Appl. Phys. Lett. 83, 5127 (2003).
http://dx.doi.org/10.1063/1.1635076
3.
3.J. Lee, Y. Park, D. Y. Kim, H. Y. Chu, H. Lee, and L. -M. Do, Appl. Phys. Lett. 82, 173 (2003).
http://dx.doi.org/10.1063/1.1537048
4.
4.I. G. Hill, A. J. Maekinea, and E. H. Kafafi, J. Appl. Phys. 88, 889 (2000).
http://dx.doi.org/10.1063/1.373752
5.
5.H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. (Weinheim, Ger.) 11, 605 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
6.
6.L. Ke, S. J. Chua, K. Zhang, and N. Yakovlev, Appl. Phys. Lett. 80, 2195 (2002).
http://dx.doi.org/10.1063/1.1464216
7.
7.M. Y. Chan, S. L. Lai, F. L. Wong, O. Lenguel, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 371, 700 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00310-5
8.
8.R. Czew, D. C. Carroll, H. S. Woo, Y. B. Kim, and J. W. Park, J. Appl. Phys. 96, 641 (2004).
http://dx.doi.org/10.1063/1.1759398
9.
9.J. McElvain, J. Appl. Phys. 80, 6002 (1996).
http://dx.doi.org/10.1063/1.363598
10.
10.M. Fujihira, L. M. Do, A. Koike, and E. M. Han, Appl. Phys. Lett. 68, 1787 (1996).
http://dx.doi.org/10.1063/1.116667
11.
11.V. N. Savvatelev, Appl. Phys. Lett. 71, 3344 (1997).
http://dx.doi.org/10.1063/1.120332
12.
12.B. H. Cumpston and K. F. Jensen, Appl. Phys. Lett. 69, 3941 (1996).
http://dx.doi.org/10.1063/1.117577
13.
13.P. E. Burrows, Appl. Phys. Lett. 65, 2922 (1994).
http://dx.doi.org/10.1063/1.112532
14.
14.P. Melpignano, A. Baron-Toaldo, V. Biondo, S. Priante, R. Zamboni, M. Murgia, S. Caria, L. Gregoratti, A. Barinov, and M. Kiskinova, Appl. Phys. Lett. 86, 041105 (2005).
http://dx.doi.org/10.1063/1.1852706
15.
15.H. J. Shin, H. J. Song, J. Lee, H. J. Yoon, J. Chung, and J. C. Lee, J. Appl. Phys. 100, 084504 (2006).
16.
16.M. K. Lee and H. J. Shin, Rev. Sci. Instrum. 72, 2605 (2001).
http://dx.doi.org/10.1063/1.1370563
17.
17.The sample current was obtained by measuring the current flow (to compensate the photoelectrons) from the ground to the sample. The sample current image represents the distribution of changes in absorbance and the electron yield of the photoelectrons.
18.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/13/10.1063/1.2994668
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Photo of OLED under in situ on-operation in vacuum. (b) Photo of degraded OLED after applying 20 V bias for 10 s.

Image of FIG. 2.

Click to view

FIG. 2.

SPEM images including the popped region of the dotted box in Fig. 1(b). (a) In , (b) O , (c) sample current (Ref. 17), (d) C at 285.8 eV, (e) C at 285 eV, and (f) C at 284.2 eV images are shown. (g) is a sample current image showing details at the edge of the popped-bubble area. (h) and (i) are the C images obtained in the central part of the popped-bubble area showing topology-enhanced microbubbles.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Survey spectra obtained from the central [“1” (outside) and “2” (on) the microbubble] and edge (“3”) regions of the popped-bubble area, as marked in Figs. 2(g) and 2(i). (b) The spectra obtained after sputtering on marks A (central region) and B (edge region).

Image of FIG. 4.

Click to view

FIG. 4.

High-resolution spectra obtained for (a) C , (b) N , and (c) In spectral components obtained from the central (1 and 2) and edge (3) regions, as indicated in Figs. 2(g) and 2(i).

Loading

Article metrics loading...

/content/aip/journal/apl/93/13/10.1063/1.2994668
2008-10-03
2014-04-23

Abstract

We investigated the degradation behavior of a high-voltage-driven organic light-emitting device(OLED) by operating the device in an ultrahigh-vacuum environment. In situ on-operation method provided the initial degradation process when the OLED was biased inside an analysis chamber. The degraded area was probed by scanning photoelectron microscopy (SPEM) using synchrotron. SPEM showed that the degradation was accompanied by a local drift of indium tin oxide (anode) toward Al (cathode) and that the heat from the degraded area separated the cathode from the layer, forming large bubbles. These results also indicate that microbubbles were formed under the , implying, before popping, the existence of local high-temperature degradation spots.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/13/1.2994668.html;jsessionid=7praqd72pbs7a.x-aip-live-06?itemId=/content/aip/journal/apl/93/13/10.1063/1.2994668&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Degradation studies on high-voltage-driven organic light-emitting device using in situ on-operation method with scanning photoelectron microscopy
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/13/10.1063/1.2994668
10.1063/1.2994668
SEARCH_EXPAND_ITEM