1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Area dependent efficiency of organic solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/16/10.1063/1.2998540
1.
1.G. P. Smestad, F. C. Krebs, C. G. Lampert, C. G. Granqvist, K. L. Chopra, X. Mathew, and H. Takakura, Sol. Energy Mater. Sol. Cells 92, 371 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.003
2.
2.V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Adv. Funct. Mater. 16, 2016 (2006).
http://dx.doi.org/10.1002/adfm.200600489
3.
3.M. Reyes-Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).
http://dx.doi.org/10.1063/1.2006986
4.
4.G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriatry, K. Emery, and Y. Yang, Nat. Mater. 4, 854 (2005).
5.
5.J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. -Q. Nguyen, M. Dante, and A. J. Heeger, Science 13, 222 (2007).
6.
6.D. Gupta, M. Bag, and K. S. Narayan, Appl. Phys. Lett. 92, 093301 (2008).
http://dx.doi.org/10.1063/1.2841062
7.
7.D. Gupta, S. Mukhopadhyay, and K. S. Narayan (in press).
8.
8.D. L. Carroll, J. Jiu, M. Namboothiry, and K. Kim, Appl. Phys. Lett. 91, 266102 (2007).
http://dx.doi.org/10.1063/1.2817241
9.
9.A. Cravino, P. Schilinsky, and C. J. Brabec, Adv. Funct. Mater. 17, 3906 (2007).
http://dx.doi.org/10.1002/adfm.200700295
10.
10.M. Kim, M. -G. Kang, L. J. Guo, and J. Kim, Appl. Phys. Lett. 92, 133301 (2008).
http://dx.doi.org/10.1063/1.2895058
11.
11.See for additional experimental details. This document can be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).[Supplementary Material]
12.
12.J. Krc, M. Zeman, F. Smole, and M. Topic, J. Appl. Phys. 92, 749 (2002).
http://dx.doi.org/10.1063/1.1487910
13.
13.S. Ito, Md. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Pechy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Gratzel, Prog. Photovoltaics 14, 589 (2006).
http://dx.doi.org/10.1002/pip.683
14.
14.M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, Science 321, 226 (2008).
http://dx.doi.org/10.1126/science.1158342
15.
15.D. Kabra and K. S. Narayan, Adv. Mater. (Weinheim, Ger.) 19, 1465 (2007).
http://dx.doi.org/10.1002/1521-4095(200010)12:19<1465::AID-ADMA1465>3.0.CO;2-9
16.
16.The spatially resolved photocurrent with the beam scanning the Al electrode track (outside the ITO boundary) also reveals an exponential type decay profile.
17.
17.A. K. Pandey, J. M. Nunzi, B. Raiter, and A. Moliton, Phys. Lett. A 372, 1333 (2008).
http://dx.doi.org/10.1016/j.physleta.2007.09.068
18.
18.C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, T. Meyer, and A. Meyer, Sol. Energy Mater. Sol. Cells 91, 379 (2007).
http://dx.doi.org/10.1016/j.solmat.2006.10.013
19.
19.M. A. Green, Solar Cells, Operating Principles, Technology and System Applications (University of New South Wales, Kensinfton, 1998).
20.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/16/10.1063/1.2998540
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Variation in and with different active areas for a P3HT-PCBM solar cell under flooded white light illumination of intensity . Devices were fabricated on two different substrates with pixel sizes of 0.01, 0.04, and (substrate 1), and 0.25 and (substrate 2). The schematic diagram of the different active area devices is depicted in the inset.

Image of FIG. 2.

Click to view

FIG. 2.

The characteristics of device under flooded and restricted collimated illumination using a calibrated Xe source. The device layout has been depicted in the inset.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Spatially resolved short-circuit photocurrent profile of a BHJ solar cell made from P3HT-PCBM blend sandwiched between unpatterned ITO and a stripe of Al cathode. The transmission of the beam was monitored using a photodetector to determine the position of the beam. In region 1, the spot ( diameter) is completely inside the overlap region. Region 2 corresponds to the boundary region where edge effects dominate. In region 3, the spot is completely outside and the transmission is position independent. The exponential fit (solid line) to the data reveals the decay length of . Inset depicts the device structure and the schematic of the measurement. The long arrow indicates scanning direction. (b) measurement using two beams with broad illumination restricted within the overlap region and a local point source illumination in the external region.

Loading

Article metrics loading...

/content/aip/journal/apl/93/16/10.1063/1.2998540
2008-10-20
2014-04-16

Abstract

Efficiency estimations of organic solar cells are observed to be dependent on the dimensions of electrode defining the active area. We address this issue and explore the manner in which efficiency scales in polymersolar cells by studying these devices as a function of electrode area and incident beam size. The increase in efficiency for smaller active areas can be explained by the reduced electrical resistive loss, the enhanced optical effects, and the finite additional fraction of photogenerated carriers in the vicinity of the perimeter defined by the metal electrode

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/16/1.2998540.html;jsessionid=1giu5fgc51wi3.x-aip-live-02?itemId=/content/aip/journal/apl/93/16/10.1063/1.2998540&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Area dependent efficiency of organic solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/16/10.1063/1.2998540
10.1063/1.2998540
SEARCH_EXPAND_ITEM