1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/16/10.1063/1.3006059
1.
1.R. G. Sun, Y. Z. Wang, Q. B. Zheng, H. J. Zhang, and A. J. Epstein, J. Appl. Phys. 87, 7589 (2000).
http://dx.doi.org/10.1063/1.373027
2.
2.L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, Appl. Phys. Lett. 78, 2122 (2001).
http://dx.doi.org/10.1063/1.1359782
3.
3.R. J. Curry and W. P. Gillin, Appl. Phys. Lett. 75, 1380 (1999).
http://dx.doi.org/10.1063/1.124700
4.
4.N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, Science 295, 1506 (2002).
http://dx.doi.org/10.1126/science.1068153
5.
5.S. A. Priola, A. Raines, and W. S. Caughey, Science 287, 1503 (2000).
http://dx.doi.org/10.1126/science.287.5457.1503
6.
6.B. S. Harrison, T. J. Foley, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, K. S. Schanze, J. Shim, P. H. Holloway, G. Padmanaban, and S. Ramakrishnan, Appl. Phys. Lett. 79, 3770 (2001).
http://dx.doi.org/10.1063/1.1421413
7.
7.B. S. Harrison, T. J. Foley, A. S. Knefely, J. K. Mwaura, G. B. Cunningham, T.- S. Kang, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, and K. S. Schanze, Chem. Mater. 16, 2938 (2004).
http://dx.doi.org/10.1021/cm049937f
8.
8.A. de Bettencourt-Dias, Dalton Trans. 2007, 2229.
9.
9.C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, Angew. Chem., Int. Ed. 46, 1109 (2007).
http://dx.doi.org/10.1002/anie.200604240
10.
10.Y. Sun, C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, J. Brooks, J. J. Brown, and S. R. Forrest, Appl. Phys. Lett. 90, 213503 (2007).
http://dx.doi.org/10.1063/1.2740113
11.
11.K. Mullen and G. Wegner, Electronic Materials: The Oligomer Approach (Wiley, New York, 1998).
12.
12.T. A. Skotheim and J. R. Reynolds, Handbook of Conducting Polymers, 3rd ed. (CRC, New York, 2007).
13.
13.M. Albota, D. Beljonne, J. -L. Bredas, J. E. Ehrlich, J.- Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. -L. Wu, and C. Xu, Science 281, 1653 (1998).
http://dx.doi.org/10.1126/science.281.5383.1653
14.
14.T. T. Steckler, K. A. Abboud, M. Craps, A. G. Rinzler, and J. R. Reynolds, Chem. Commun. (Cambridge) 2007, 4904.
15.
15.B. C. Thompson, L. G. Madrigal, M. R. Pinto, T. -S. Kang, K. S. Schanze, and J. R. Reynolds, J. Polym. Sci., Part A: Polym. Chem. 43, 1417 (2005).
http://dx.doi.org/10.1002/pola.20578
16.
16.Y. Zheng, S.- H. Eom, N. Chopra, J. Lee, F. So, and J. Xue, Appl. Phys. Lett. 92, 223301 (2008).
http://dx.doi.org/10.1063/1.2937403
17.
17.J. Xue and S. R. Forrest, J. Appl. Phys. 95, 1869 (2004).
http://dx.doi.org/10.1063/1.1640454
18.
18.I. G. Hill, D. Milliron, J. Schwartz, and A. Kahn, Appl. Surf. Sci. 166, 354 (2000).
http://dx.doi.org/10.1016/S0169-4332(00)00449-9
19.
19.S. R. Forrest, D. D. C. Bradley, and M. E. Thompson, Adv. Mater. (Weinheim, Ger.) 15, 1043 (2003).
http://dx.doi.org/10.1002/adma.200302151
20.
20.C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989).
http://dx.doi.org/10.1063/1.343409
21.
21.The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the U.S. Army Aviation and Missile Research, Development, and Engineering Center, or the U.S. Government.
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/16/10.1063/1.3006059
Loading
/content/aip/journal/apl/93/16/10.1063/1.3006059
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/93/16/10.1063/1.3006059
2008-10-21
2014-11-28

Abstract

We report strong and efficient near infrared emission from organic light-emitting devices(OLEDs) based on two donor-acceptor-donor oligomers. These oligomers have fluorescent quantum yields of up to 20% and their energy gap can be tuned by changing the strengths of the donor and acceptor components. Electroluminescence with peak emission wavelengths of 692 and 815 nm were observed from the two oligomers studied here. External quantum efficiencies up to 1.6% and electrical-to-optical power efficiencies up to 7.0 mW/W were achieved in OLEDs based on these near-infrared emitters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/16/1.3006059.html;jsessionid=59881iorrkj30.x-aip-live-03?itemId=/content/aip/journal/apl/93/16/10.1063/1.3006059&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/16/10.1063/1.3006059
10.1063/1.3006059
SEARCH_EXPAND_ITEM