1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Gain coefficient method for amplified spontaneous emission in thin waveguided film of a conjugated polymer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/16/10.1063/1.3007983
1.
1.T. W. Hagler, K. Pakbaz, K. F. Voss, and A. J. Heeger, Phys. Rev. B 44, 8652 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.8652
2.
2.N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, and A. B. Holmes, Nature (London) 365, 628 (1993).
http://dx.doi.org/10.1038/365628a0
3.
3.K. Pichler, D. A. Halliday, D. D. C. Bradley, P. L. Burn, R. H. Friend, and A. B. Holmes, J. Phys.: Condens. Matter 5, 7155 (1993).
http://dx.doi.org/10.1088/0953-8984/5/38/011
4.
4.Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruschin, Appl. Phys. Lett. 66, 1169 (1995).
http://dx.doi.org/10.1063/1.113846
5.
5.F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, Science 273, 1833 (1996).
http://dx.doi.org/10.1126/science.274.5294.1833
6.
6.C. Zens, W. Graupner, S. Tasch, G. Leising, K. Müllen, and U. Scherf, Appl. Phys. Lett. 71, 2566 (1997).
http://dx.doi.org/10.1063/1.119332
7.
7.M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Díaz-García, and A. J. Heeger, Phys. Rev. B 58, 7035 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7035
8.
8.T. Kobayashi, M. Flämmich, G. Jordan, R. D’Arcy, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, Appl. Phys. Lett. 89, 131119 (2006).
http://dx.doi.org/10.1063/1.2348738
9.
9.S. V. Frolov, W. Gellemann, M. Osaki, K. Yoshino, and Z. V. Vaderny, Phys. Rev. Lett. 78, 729 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.729
10.
10.M. D. McGehee, M. A. Díaz-García, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, Appl. Phys. Lett. 72, 1536 (1998).
http://dx.doi.org/10.1063/1.121679
11.
11.S. V. Frolov, Z. V. Vaderny, K. Yoshino, A. Zakhidov, and R. H. Baughman, Phys. Rev. B 59, R5284 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.R5284
12.
12.D. Moses, Appl. Phys. Lett. 60, 3215 (1992).
http://dx.doi.org/10.1063/1.106743
13.
13.N. Tessler, G. J. Denton, and R. H. Friend, Nature (London) 382, 695 (1996).
http://dx.doi.org/10.1038/382695a0
14.
14.U. Scherf, S. Riechel, U. Lemmer, and R. F. Marht, Curr. Opin. Solid State Mater. Sci. 5, 143 (2001).
http://dx.doi.org/10.1016/S1359-0286(01)00010-9
15.
15.M. D. McGehee and A. J. Heeger, Adv. Mater. (Weinheim, Ger.) 12, 1655 (2000).
http://dx.doi.org/10.1002/1521-4095(200011)12:22<1655::AID-ADMA1655>3.0.CO;2-2
16.
16.I. D. W. Samuel and G. A. Turnbull, Chem. Rev. (Washington, D.C.) 107, 1272 (2007).
http://dx.doi.org/10.1021/cr050152i
17.
17.F. E. Willians and H. Eyring, J. Chem. Phys. 15, 289 (1947).
http://dx.doi.org/10.1063/1.1746499
18.
18.P. J. Dean, Phys. Rev. 157, 655 (1967).
http://dx.doi.org/10.1103/PhysRev.157.655
19.
19.W. Z. Shen, W. G. Tang, Z. Y. Li, S. C. Shen, and A. Dimoulas, J. Cryst. Growth 152, 28 (1995).
http://dx.doi.org/10.1016/0022-0248(95)00086-0
20.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/16/10.1063/1.3007983
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Integrated intensity as a function of pump intensity for , 0.12, and 0.3 cm. The full lines are the fits obtained from Eq. (3). The inset table shows other parameters , , , and used in the fitting process.

Image of FIG. 2.

Click to view

FIG. 2.

The parameters obtained from the fits of the integrated vs curves for laser stripe lengths varying from 0.03 to 0.3 cm. The dashed line was obtained via interpolation of the points.

Image of FIG. 3.

Click to view

FIG. 3.

The behavior of the gain coefficient as a function of for three different pump intensities. The error bars for each curve are shown for .

Image of FIG. 4.

Click to view

FIG. 4.

The threshold intensity as a function of the excitation laser stripe . The dashed line is a guide for the eyes.

Loading

Article metrics loading...

/content/aip/journal/apl/93/16/10.1063/1.3007983
2008-10-23
2014-04-16

Abstract

A method based on the unidimensional gain equation has been developed in order to fit the experimental data due to amplification of spontaneous emission in a thin film of conjugated polymer waveguide. The results have confirmed not only a dependence of the gain coefficient on the laser intensity but also on the length of the excitation laser stripe. The results are presented as a function of the average intensity in , which is a manner to express the threshold intensity for a direct comparison between different materials, independent of the setup used.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/16/1.3007983.html;jsessionid=1clsrsdvd8tr8.x-aip-live-06?itemId=/content/aip/journal/apl/93/16/10.1063/1.3007983&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Gain coefficient method for amplified spontaneous emission in thin waveguided film of a conjugated polymer
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/16/10.1063/1.3007983
10.1063/1.3007983
SEARCH_EXPAND_ITEM