1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Inverted small molecule organic photovoltaic cells on reflective substrates
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/17/10.1063/1.3005173
1.
1.R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 91, 013508 (2007).
http://dx.doi.org/10.1063/1.2752992
2.
2.R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 88, 233502 (2006).
http://dx.doi.org/10.1063/1.2209176
3.
3.M. Glatthaar, M. Niggemann, B. Zimmerman, P. Lewer, M. Riede, A. Hinsch, and J. Luther, Thin Solid Films 491, 298 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.06.006
4.
4.Q. L. Song, M. L. Wang, E. G. Obbard, X. Y. Sun, X. M. Ding, X. Y. Hou, and C. M. Li, Appl. Phys. Lett. 89, 251118 (2006).
http://dx.doi.org/10.1063/1.2422911
5.
5.Y. Şahin, S. Alem, R. de Bettignies, and J. Nunzi, Thin Solid Films 476, 340 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.10.018
6.
6.C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and S. J. Brabec, Appl. Phys. Lett. 89, 233517 (2006).
http://dx.doi.org/10.1063/1.2402890
7.
7.M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).
http://dx.doi.org/10.1063/1.2359579
8.
8.P. Peumans, V. Bulovic, and S. R. Forrest, Appl. Phys. Lett. 76, 2650 (2000).
http://dx.doi.org/10.1063/1.126433
9.
9.P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
10.
10.L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
11.
11.P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 1 (2001).
http://dx.doi.org/10.1063/1.1381035
12.
12.B. P. Rand, D. P. Burk, and S. R. Forrest, Phys. Rev. B 75, 115327 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115327
13.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/17/10.1063/1.3005173
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Current-voltage characteristics for a conventional CuPc/PTCBI photovoltaic cell structure in the dark (squares) and under simulated , AM1.5G illumination (dashed lines), and for the optimized inverted structure in the dark (triangles), and under illumination (dashed-dotted line). The solid lines are fits to the measurement using theory in text. (b) Power conversion efficiency (circles), open-circuit voltage (triangles) and fill factor (squares) for the inverted device structure: as a function of incident power density.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Simulated (line) and measured photocurrent at one sun intensity (filled squares) for , where is varied from . Power conversion efficiency, (squares), open-circuit voltage, (triangles), and fill factor, FF (circles), are also shown under simulated AM1.5G illumination. (b) Simulated (line) and measured photocurrent (filled squares) for , where is varied from . Power conversion efficiency, (squares), (triangles), and FF (circles), are also shown under simulated AM1.5G illumination.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Simulated contour plot of the short-circuit current density as a function of CuPc and PTCBI thicknesses. (b) Simulated contour plot of power conversion efficiency as a function of CuPc and PTCBI thicknesses. For these plots, we assume the ideality factor , reverse saturation current , and the series resistance as a function of the CuPc and PTCBI thicknesses ( and ) follows . The diffusion lengths of CuPc and PTCBI were taken as and , with a lifetime of . Values of Ni anode, ITO cathode, and BCP layers thicknesses were 1000, 400, and , respectively, for these simulations.

Loading

Article metrics loading...

/content/aip/journal/apl/93/17/10.1063/1.3005173
2008-10-29
2014-04-19

Abstract

We demonstrate top-illuminated, inverted, small molecule photovoltaic cells grown on reflective substrates employing copper phthalocyanine as the donor and 3,4,9,10-perylenetetracarboxylic bis-benzimidazole as the acceptor, with a sputter-deposited transparent indium tin oxide top cathode and a metal anode, thereby reversing the conventional charge extraction properties of these contacts. The best device achieved a peak power conversion efficiency of , reasonably consistent with the optical simulations under AM1.5G illumination giving . This work suggests that inverted organic solar cells grown on reflective substrates have potential uses such as for power-generating coatings on opaque surfaces.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/17/1.3005173.html;jsessionid=4l0guti3368l2.x-aip-live-02?itemId=/content/aip/journal/apl/93/17/10.1063/1.3005173&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Inverted small molecule organic photovoltaic cells on reflective substrates
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/17/10.1063/1.3005173
10.1063/1.3005173
SEARCH_EXPAND_ITEM