1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Highly efficient excimer-based white phosphorescent devices with improved power efficiency and color rendering index
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/19/10.1063/1.3013324
1.
1.M. Berggren, G. Gustafsson, O. Inganas, M. R. Andersson, T. Hjertberg, and O. Wennerstrom, J. Appl. Phys. 76, 7530 (1994).
http://dx.doi.org/10.1063/1.357984
2.
2.J. Kido, M. Kimura, and K. Nagai, Science 267, 1332 (1995).
http://dx.doi.org/10.1126/science.267.5202.1332
3.
3.C. -I. Chao and S. -A. Chen, Appl. Phys. Lett. 73, 426 (1998).
http://dx.doi.org/10.1063/1.121888
4.
4.B. W. D’Andrade, J. Brooks, V. Adamovich, M. E. Thompson, and S. R. Forrest, Adv. Mater. (Weinheim, Ger.) 14, 1032 (2002);
http://dx.doi.org/10.1002/1521-4095(20020805)14:15<1032::AID-ADMA1032>3.0.CO;2-6
4.V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander, P. I. Djurovich, B. W. D'Andrade, C. Adachi, S. R. Forrest, and M. E. Thompson, New J. Chem.26, 1171 (2002).
http://dx.doi.org/10.1039/b204301g
5.
5.W. F. Xie, Z. J. Wu, S. Y. Liu, and S. T. Lee, J. Phys. D 36, 2331 (2003).
http://dx.doi.org/10.1088/0022-3727/36/19/003
6.
6.B. W. D’Andrade and R. Forrest, Adv. Mater. (Weinheim, Ger.) 16, 1585 (2004).
http://dx.doi.org/10.1002/adma.200400684
7.
7.G. L. Tu, Q. G. Zhou, Y. X. Cheng, L. X. Wang, D. G. Ma, X. B. Jing, and F. S. Wang, Appl. Phys. Lett. 85, 2172 (2004).
http://dx.doi.org/10.1063/1.1793356
8.
8.J. S. Huang, G. Li, E. Wu, Q. F. Xu, and Y. Yang, Adv. Mater. (Weinheim, Ger.) 18, 114 (2006).
http://dx.doi.org/10.1002/adma.200501105
9.
9.F. -I. Wu, P. -I. Shih, Y. -H. Tseng, C. -F. Shu, Y. -L. Tung, and Y. Chi, J. Mater. Chem. 17, 167 (2007).
http://dx.doi.org/10.1039/b610111a
10.
10.F. -I. Wu, X. -H. Yang, D. Neher, R. Dodda, Y. -H. Tseng, and C. -F. Shu, Adv. Funct. Mater. 17, 2053 (2007).
11.
11.E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, Adv. Mater. (Weinheim, Ger.) 19, 197 (2007).
http://dx.doi.org/10.1002/adma.200602174
12.
12.X. -H. Yang, Z. -X. Wang, S. Madakuni, and G. E. Jabbour, Adv. Mater. (Weinheim, Ger.) 20, 2405 (2008).
http://dx.doi.org/10.1002/adma.200702940
13.
13.B. W. Ma, P. I. Djurovich, S. Garon, B. Alleyne, and M. E. Thompson, Adv. Funct. Mater. 16, 2438 (2006).
http://dx.doi.org/10.1002/adfm.200600614
14.
14.B. D’Andrade and S. R. Forrest, Chem. Phys. 286, 321 (2003).
http://dx.doi.org/10.1016/S0301-0104(02)00921-7
15.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/19/10.1063/1.3013324
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

EL spectra of the devices having the structure of ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy:12% FPt (25 nm)/BCP (40 nm)/CsF/Al (open symbols) and ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy:OXD-7 (49%):2% Pt-4 (25 nm)/BCP (40 nm)/CsF/Al (solid symbols). Inset: the chemical structures of Pt-4 and FPt.

Image of FIG. 2.

Click to view

FIG. 2.

The EL spectra of the devices having the structure ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy:12% FPt (10 nm)/26 mCPy:2% Pt-4 (15 nm)/BCP (40 nm)/CsF/Al (circles), ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy:2% Pt-4 (15 nm)/26 mCPy:12% FPt (10 nm)/BCP (40 nm)/CsF/Al (squares), ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy:2% Pt-4:12% FPt (25 nm)/BCP (40 nm)/CsF/Al (up-triangles), and ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy:2% Pt-4:8% FPt (25 nm)/BCP (40 nm)/CsF/Al (down-triangles) at 4–5 V (solid symbols) and 7 V (open symbols).

Image of FIG. 3.

Click to view

FIG. 3.

EQE as a function of the current density of the devices having the structure of ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy:12% FPt (10 nm)/26 mCPy:2% Pt-4 (15 nm)/BCP (40 nm)/CsF/Al (circles), ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy:2% Pt-4 (15 nm)/26 mCPy:12% FPt (10 nm)/BCP (40 nm)/CsF/Al (squares), ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy:2% Pt-4:12% FPt (25 nm)/BCP (40 nm)/CsF/Al (up-triangles), and ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy:2% Pt-4:8% FPt (25 nm)/BCP (40 nm)/CsF/Al (down-triangles). Inset: Current density-voltage characteristics of the above mentioned devices.

Loading

Article metrics loading...

/content/aip/journal/apl/93/19/10.1063/1.3013324
2008-11-12
2014-04-18

Abstract

Power efficiency, Commission Internationale d’Énclairage (CIE) coordinates, and color rendering index (CRI) of white phosphorescent excimer devices were improved by utilizing two platinum complexes as emissive dopants and exploring different device structures. Compared with devices containing two emissive layers each having a different dopant, devices having two dopants incorporated in a single host layer showed better color stability with the change in operating voltage. White phosphorescent excimer devices having the double-doped emissive layer showed an external quantum efficiency and a power efficiency of 14.5% and 17 lm/W, respectively, at . The CIE coordinates and CRI of the devices were (0.382, 0.401) and 81, which were almost independent of the drive voltage.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/19/1.3013324.html;jsessionid=478ck0s1jolt3.x-aip-live-01?itemId=/content/aip/journal/apl/93/19/10.1063/1.3013324&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Highly efficient excimer-based white phosphorescent devices with improved power efficiency and color rendering index
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/19/10.1063/1.3013324
10.1063/1.3013324
SEARCH_EXPAND_ITEM