1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Polarized emission from high quality microcavity based on active organic layered domains
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/19/10.1063/1.3026534
1.
1.M. Anni, G. Gigli, R. Cingolani, S. Patané, A. Arena, and M. Allegrini, Appl. Phys. Lett. 79, 1381 (2001).
http://dx.doi.org/10.1063/1.1398323
2.
2.R. J. Holmes and S. R. Forrest, Org. Electron. 8, 77 (2007).
http://dx.doi.org/10.1016/j.orgel.2006.05.005
3.
3.D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, Nature (London) 39, 55 (1998).
4.
4.R. J. Holmes and S. R. Forrest, Phys. Rev. Lett. 93, 186404 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.186404
5.
5.L. G. Connolly, D. G. Lidzey, R. Butte, A. M. Adawi, D. M. Whittaker, M. S. Skolnick, and R. Airey, Appl. Phys. Lett. 83, 5377 (2003).
http://dx.doi.org/10.1063/1.1637146
6.
6.M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, Semicond. Sci. Technol. 13, 645 (1998).
http://dx.doi.org/10.1088/0268-1242/13/7/003
7.
7.J. K. Vahala, Nature (London) 424, 839 (2003).
http://dx.doi.org/10.1038/nature01939
8.
8.C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.3314
9.
9.G. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 86, 3903 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3903
10.
10.M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, Phys. Rev. Lett. 86, 3168 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3168
11.
11.T. Virgili, D. G. Lidzey, D. D. C. Bradley, and S. Walkerb, Synth. Met. 116, 497 (2001).
http://dx.doi.org/10.1016/S0379-6779(00)00422-7
12.
12.D. Baxter, M. S. Skolnick, A. Armitage, V. N. Astratov, D. M. Whittaker, T. A. Fisher, J. S. Roberts, D. J. Mowbray, and M. A. Kaliteevski, Phys. Rev. B 56, R10032 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R10032
13.
13.C. Y. Hu, H. Z. Zheng, J. D. Zhang, H. Zhang, F. H. Yang, and Y. P. Zeng, Appl. Phys. Lett. 82, 665 (2003).
http://dx.doi.org/10.1063/1.1542929
14.
14.G. Jungk, Phys. Status Solidi 199, 605 (1997).
15.
15.A. Camposeo, L. Persano, P. Del Carro, T. Virgili, R. Cingolani, and D. Pisignano, Org. Electron. 8, 114 (2007).
http://dx.doi.org/10.1016/j.orgel.2006.06.004
16.
16.M. A. Kaliteevski and A. V. Kavokin, Phys. Solid State 37, 3074 (1995).
17.
17.A. A. Dukin, N. A. Feoktistov, V. G. Golubev, A. V. Medvedev, A. B. Pevtsov, and A. V. Sel’kin, Phys. Rev. E 67, 046602 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.046602
18.
18.L. Persano, E. Mele, R. Cingolani, and D. Pisignano, Appl. Phys. Lett. 87, 031103 (2005).
http://dx.doi.org/10.1063/1.1994956
19.
19.G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. S. Skolnick, V. N. Astratov, J. S. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. A. Kaliteevski, Phys. Rev. B 59, 5082 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.5082
20.
20.V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, Science 279, 553 (1998).
http://dx.doi.org/10.1126/science.279.5350.553
21.
21.P. K. H. Ho, S. Thomas, R. H. Friend, and N. Tessler, Science 285, 233 (1999);
http://dx.doi.org/10.1126/science.285.5425.233
21.R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, Appl. Phys. Lett. 77, 1262 (2000);
http://dx.doi.org/10.1063/1.1287402
21.M. S. Unlu and S. Strite, J. Appl. Phys. 78, 607 (1995).
http://dx.doi.org/10.1063/1.360322
22.
22.K. W. Chien and H. P. D. Shieh, Appl. Opt. 43, 1830 (2004).
http://dx.doi.org/10.1364/AO.43.001830
23.
23.R. Oldenbourg, Nature (London) 381, 811 (1996).
http://dx.doi.org/10.1038/381811a0
24.
24.M. O. Senge, M. Fazekas, E. G. A. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos, and E. M. Ni Mhuircheartaigh, Adv. Mater. (Wienheim, Ger.) 19, 2737 (2007).
25.
25.G. Gigli, O. Inganäs, M. Anni, M. De Vittorio, R. Cingolani, G. Barbarella, and L. Favaretto, Appl. Phys. Lett. 78, 1493 (2001).
http://dx.doi.org/10.1063/1.1355991
26.
26.R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, Phys. Rev. Lett. 85, 3680 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3680
27.
27.M. Saba, C. Ciuti, J. Bloch, and V. Thierry-Mieg R. AndreÂ, Le Si Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, Nature (London) 414, 731 (2001).
http://dx.doi.org/10.1038/414731a
28.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/19/10.1063/1.3026534
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Normal incidence optical reflectivity of the device. The insets show the molecule and the device structures.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Angle-resolved and (b) polarization resolved PL spectra.

Image of FIG. 3.

Click to view

FIG. 3.

TE-TM splitting as calculated (continuous line) within the transfer matrix approach and measured (dots) from the experimental angle resolved PL.

Image of FIG. 4.

Click to view

FIG. 4.

TE, TM absorption (dots line) and PL spectra (continuous line) collected at an angle of . The inset shows the contact mode AFM topography of the organic layer grown under the same conditions as in the complete device.

Loading

Article metrics loading...

/content/aip/journal/apl/93/19/10.1063/1.3026534
2008-11-10
2014-04-17

Abstract

We demonstrate a giant polarization splitting of the emission of a high quality monolithic microcavity with an embedded ultrathin organic tetrakis(4-methoxyphenyl)porphyrin layer. The usual employed mechanism, based on the mismatch between the center of the mirror stopband and the wavelength of the microcavity, accounts only for a small fraction of the observed splitting. Optical and atomic force microscopy measurements allowed us to attribute it to local crystalline molecular order. This opens the way for the design and optimization of highly polarized compact optical sources.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/19/1.3026534.html;jsessionid=441gcub72ue5g.x-aip-live-02?itemId=/content/aip/journal/apl/93/19/10.1063/1.3026534&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Polarized emission from high quality microcavity based on active organic layered domains
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/19/10.1063/1.3026534
10.1063/1.3026534
SEARCH_EXPAND_ITEM