1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
A sensor circuit using reference-based conductance switching in organic electrochemical transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/20/10.1063/1.2975377
1.
1.J. W. Thackeray, H. S. White, and M. S. Wrighton, J. Phys. Chem. 89, 5133 (1985).
http://dx.doi.org/10.1021/j100269a048
2.
2.A. Michalska, A. Galuszkiewicz, M. Ogonowska, M. Ocypa, and K. Maksymiuk, J. Solid State Electrochem. 8, 381 (2004).
http://dx.doi.org/10.1007/s10008-003-0459-8
3.
3.A. Kros, N. A. J. M. Sommerdijk, and R. J. M. Nolte, Sens. Actuators B 106, 289 (2005).
http://dx.doi.org/10.1016/j.snb.2004.08.011
4.
4.P. Sjoberg-Eerola, J. Bobacka, A. Lewenstam, and A. Ivaska, Sens. Actuators B 127, 545 (2007).
http://dx.doi.org/10.1016/j.snb.2007.05.004
5.
5.D. Bélanger and M. S. Wrighton, Anal. Chem. 59, 1426 (1987).
http://dx.doi.org/10.1021/ac00137a012
6.
6.J. T. Mabeck and G. G. Malliaras, Anal. Bioanal. Chem. 384, 343 (2005).
http://dx.doi.org/10.1007/s00216-005-3390-2
7.
7.Z. -T. Zhu, J. T. Mabeck, C. Zhu, N. C. Cady, C. A. Batt, and G. G. Malliaras, Chem. Commun. (Cambridge) 2004, 1556 (2004).
http://dx.doi.org/10.1039/b403327m
8.
8.D. Nilsson, T. Kugler, P. -O. Svensson, and M. Berggren, Sens. Actuators B 86, 193 (2002).
http://dx.doi.org/10.1016/S0925-4005(02)00170-3
9.
9.L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater. (Weinheim, Ger.) 12, 481 (2000).
http://dx.doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
10.
10.M. Cavallini, P. Stoliar, J. -F. Moulin, M. Surin, P. Leclere, R. Lazzaroni, D. W. Breiby, J. W. Andreasen, M. M. Nielsen, P. Sonar, A. C. Grimsdale, K. Mullen, and F. Biscarini, Nano Lett. 5, 2422 (2005).
http://dx.doi.org/10.1021/nl051685+
11.
11.D. A. Bernards and G. G. Malliaras, Adv. Funct. Mater. 17, 3538 (2007).
http://dx.doi.org/10.1002/adfm.200601239
12.
12.D. A. Bernards, G. G. Malliaras, G. E. S. Toombes, and S. M. Gruner, Appl. Phys. Lett. 89, 053505 (2006).
http://dx.doi.org/10.1063/1.2266250
13.
13.M. Berggren, D. Nilsson, and N. D. Robinson, Nat. Mater. 6, 3 (2007).
http://dx.doi.org/10.1038/nmat1817
14.
14.Y. Yoshioka and G. E. Jabbour, Adv. Mater. (Weinheim, Ger.) 18, 1307 (2006).
http://dx.doi.org/10.1002/adma.200502362
15.
15.Q. Pei, G. Zuccarello, M. Ahlskog, and O. Inganäs, Polymer 35, 1347 (1994).
http://dx.doi.org/10.1016/0032-3861(94)90332-8
16.
16.D. Nilsson, R. Forchheimer, M. Berggren, and N. Robinson, The Electrochemical Transistor and Circuit Design Considerations (IEEE, Cork, Ireland, 2005), pp. 349352.
17.
17.M. Chen, D. Nilsson, T. Kugler, M. Berggren, and T. Remonen, Appl. Phys. Lett. 81, 2011 (2002).
http://dx.doi.org/10.1063/1.1506785
18.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/20/10.1063/1.2975377
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) The chemical structures of PEDOT and PSS, respectively. (b) The top view and the layout of the PEDOT:PSS EC transistor and (c) its associated current vs voltage characteristics. (d) current transients as is switched from 0 to 0.5 V at for two different KCl aqueous electrolyte concentrations, 100 and 500 mM, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

(a) The layout of the EC sensor circuit and (b) the associated circuit diagram.

Image of FIG. 3.

Click to view

FIG. 3.

(a) The peak-to-peak voltage difference vs the concentration difference . Inset: the measured raw signal. (b) The current through and , connected to a load, respectively, will swing around the OP along the corresponding load line. Since the reference transistor switches faster as compared to sample transistor, it will always reach relatively more far away from the OP. This difference in current transient behavior between the and defines the sensor output signal . (c) Stability; the measured raw signal is given vs time for a sensing sequence. (1) 150 mM NaCl aqueous electrolytes were applied to and . (2) The electrolyte concentration of the transistor was sequentially diluted to finally reach a concentration of 15 mM (3). The electrolyte was then (4) removed and (5) replaced by a 150 mM NaCl solution.

Loading

Article metrics loading...

/content/aip/journal/apl/93/20/10.1063/1.2975377
2008-11-18
2014-04-18

Abstract

Using organic electrochemical transistors as sensors, the sample-receptor reaction often induces moderate changes only in the drain current dynamics as the gate voltage level is switched. Here, we report an electrochemical sensor circuit including electrochemical transistors based on poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonate that puts out a static sensor response signal. The circuit includes a sample and a reference transistor that are both driven in the resistive mode at 0.1 V. Measurements were performed on aqueous salt electrolytes ranging from 100 to 500 mM concentrations. The signal-ON sensor circuit provides a tenfold increase in the sensitivity as compared to single transistor sensors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/20/1.2975377.html;jsessionid=6boshg41m83p3.x-aip-live-06?itemId=/content/aip/journal/apl/93/20/10.1063/1.2975377&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A sensor circuit using reference-based conductance switching in organic electrochemical transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/20/10.1063/1.2975377
10.1063/1.2975377
SEARCH_EXPAND_ITEM