1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Enhancing single-molecule photostability by optical feedback from quantum jump detection
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/20/10.1063/1.3013843
1.
1.T. Basché, W. E. Moerner, M. Orrit, and U. P. Wild, Single-Molecule Optical Detection, Imaging and Spectroscopy (VCH, Weinheim, 1997).
2.
2.B. Lounis and W. E. Moerner, Nature (London) 407, 491 (2000).
http://dx.doi.org/10.1038/35035032
3.
3.S. Weiss, Science 283, 1676 (1999).
http://dx.doi.org/10.1126/science.283.5408.1676
4.
4.R. Zondervan, F. Kulzer, M. A. Kol’chenko, and M. Orrit, J. Phys. Chem. A 108, 1657 (2004).
http://dx.doi.org/10.1021/jp037222e
5.
5.T. Ha and J. Xu, Phys. Rev. Lett. 90, 223002 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.223002
6.
6.J. P. Hoogenboom, E. M. H. P. van Dijk, J. Hernando, N. F. van Hulst, and M. F. Garciá-Parajó, Phys. Rev. Lett. 95, 097401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.097401
7.
7.J. Widengren, A. Chmyrov, C. Eggeling, P.-A. Lofdahl, and C. A. M. Seidel, J. Phys. Chem. A 111, 429 (2007).
http://dx.doi.org/10.1021/jp0646325
8.
8.R. Y. Tsien and A. Waggoner, Handbook of Biological Confocal Microscopy (Plenum, New York, 1995).
9.
9.A. Margineanu, J. Hofkens, M. Cotlet, S. Habuchi, A. Stefan, J. Qu, C. Kohl, K. Müllen, J. Vercammen, Y. Engelborghs, T. Gensch, and F. C. De Schryver, J. Phys. Chem. B 108, 12242 (2004).
http://dx.doi.org/10.1021/jp048051w
10.
10.C. Jung, B. K. Müller, D. C. Lamb, F. Nolde, K. Müllen, and C. Bräuchle, J. Am. Chem. Soc. 128, 5283 (2006).
http://dx.doi.org/10.1021/ja0588104
11.
11.C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, Anal. Chem. 70, 2651 (1998).
http://dx.doi.org/10.1021/ac980027p
12.
12.L. A. Deschenes and D. A. Vanden Bout, Chem. Phys. Lett. 365, 387 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)01490-2
13.
13.F. P. Schäfer, Dye Laser, Topics in Applied Physics, Vol. 1 (Springer, Berlin, 1990).
14.
14.G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, Proc. Natl. Acad. Sci. U.S.A. 103, 11440 (2006).
http://dx.doi.org/10.1073/pnas.0604965103
15.
15.F. Treussart, A. Clouqueur, C. Grossman, and J.-F. Roch, Opt. Lett. 26, 1504 (2001).
http://dx.doi.org/10.1364/OL.26.001504
16.
16.T. Basché, S. Kummer, and C. Braächle, Nature (London) 373, 132 (1995).
http://dx.doi.org/10.1038/373132a0
17.
17.J. A. Veerman, M. F. Garciá-Parajó, L. Kuipers, and N. F. van Hulst, Phys. Rev. Lett. 83, 2155 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2155
18.
18.For each molecule in the set of data, the survival time before photobleaching is corrected for all periods when the laser is switched off.
19.
19.W. H. Press, T. V. Vetterling, S. A. Teukolsky, and B. P. Flannery, Numerical Recipes in Fortran. The Art of Scientific Computing (Cambridge University Press, New York, 1992).
20.
20.P. Didier, L. Guidoni, and F. Bardou, Phys. Rev. Lett. 95, 090602 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.090602
21.
21.Y. Lill and B. Hecht, Appl. Phys. Lett. 84, 1665 (2004).
http://dx.doi.org/10.1063/1.1667591
22.
22.T. Christ, F. Kulzer, P. Bordat, and T. Basché, Angew. Chem., Int. Ed. 40, 4192 (2001).
http://dx.doi.org/10.1002/1521-3773(20011119)40:22<4192::AID-ANIE4192>3.3.CO;2-4
23.
23.A. Renn, J. Seelig, and V. Sandoghdar, Mol. Phys. 104, 409 (2006).
http://dx.doi.org/10.1080/00268970500361861
24.
24.F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, Phys. Rev. Lett. 94, 023005 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.023005
25.
25.J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, Phys. Rev. Lett. 95, 117401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.117401
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/20/10.1063/1.3013843
Loading
/content/aip/journal/apl/93/20/10.1063/1.3013843
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/93/20/10.1063/1.3013843
2008-11-20
2014-12-18

Abstract

We report an optical technique that yields an enhancement of single-molecule photostability by greatly suppressing photobleaching pathways which involve photoexcitation from the triplet state. This is accomplished by dynamically switching off the excitation laser when a quantum jump of the molecule to the triplet state is optically detected. The resulting improvement in photostability unambiguously confirms the importance of photoexcitation from the triplet state in photobleaching dynamics and will allow the investigation of new phenomena at the single-molecule level.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/20/1.3013843.html;jsessionid=7kdnik12s16nu.x-aip-live-02?itemId=/content/aip/journal/apl/93/20/10.1063/1.3013843&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhancing single-molecule photostability by optical feedback from quantum jump detection
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/20/10.1063/1.3013843
10.1063/1.3013843
SEARCH_EXPAND_ITEM