1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Enhancing single-molecule photostability by optical feedback from quantum jump detection
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/20/10.1063/1.3013843
1.
1.T. Basché, W. E. Moerner, M. Orrit, and U. P. Wild, Single-Molecule Optical Detection, Imaging and Spectroscopy (VCH, Weinheim, 1997).
2.
2.B. Lounis and W. E. Moerner, Nature (London) 407, 491 (2000).
http://dx.doi.org/10.1038/35035032
3.
3.S. Weiss, Science 283, 1676 (1999).
http://dx.doi.org/10.1126/science.283.5408.1676
4.
4.R. Zondervan, F. Kulzer, M. A. Kol’chenko, and M. Orrit, J. Phys. Chem. A 108, 1657 (2004).
http://dx.doi.org/10.1021/jp037222e
5.
5.T. Ha and J. Xu, Phys. Rev. Lett. 90, 223002 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.223002
6.
6.J. P. Hoogenboom, E. M. H. P. van Dijk, J. Hernando, N. F. van Hulst, and M. F. Garciá-Parajó, Phys. Rev. Lett. 95, 097401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.097401
7.
7.J. Widengren, A. Chmyrov, C. Eggeling, P.-A. Lofdahl, and C. A. M. Seidel, J. Phys. Chem. A 111, 429 (2007).
http://dx.doi.org/10.1021/jp0646325
8.
8.R. Y. Tsien and A. Waggoner, Handbook of Biological Confocal Microscopy (Plenum, New York, 1995).
9.
9.A. Margineanu, J. Hofkens, M. Cotlet, S. Habuchi, A. Stefan, J. Qu, C. Kohl, K. Müllen, J. Vercammen, Y. Engelborghs, T. Gensch, and F. C. De Schryver, J. Phys. Chem. B 108, 12242 (2004).
http://dx.doi.org/10.1021/jp048051w
10.
10.C. Jung, B. K. Müller, D. C. Lamb, F. Nolde, K. Müllen, and C. Bräuchle, J. Am. Chem. Soc. 128, 5283 (2006).
http://dx.doi.org/10.1021/ja0588104
11.
11.C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, Anal. Chem. 70, 2651 (1998).
http://dx.doi.org/10.1021/ac980027p
12.
12.L. A. Deschenes and D. A. Vanden Bout, Chem. Phys. Lett. 365, 387 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)01490-2
13.
13.F. P. Schäfer, Dye Laser, Topics in Applied Physics, Vol. 1 (Springer, Berlin, 1990).
14.
14.G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, Proc. Natl. Acad. Sci. U.S.A. 103, 11440 (2006).
http://dx.doi.org/10.1073/pnas.0604965103
15.
15.F. Treussart, A. Clouqueur, C. Grossman, and J.-F. Roch, Opt. Lett. 26, 1504 (2001).
http://dx.doi.org/10.1364/OL.26.001504
16.
16.T. Basché, S. Kummer, and C. Braächle, Nature (London) 373, 132 (1995).
http://dx.doi.org/10.1038/373132a0
17.
17.J. A. Veerman, M. F. Garciá-Parajó, L. Kuipers, and N. F. van Hulst, Phys. Rev. Lett. 83, 2155 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2155
18.
18.For each molecule in the set of data, the survival time before photobleaching is corrected for all periods when the laser is switched off.
19.
19.W. H. Press, T. V. Vetterling, S. A. Teukolsky, and B. P. Flannery, Numerical Recipes in Fortran. The Art of Scientific Computing (Cambridge University Press, New York, 1992).
20.
20.P. Didier, L. Guidoni, and F. Bardou, Phys. Rev. Lett. 95, 090602 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.090602
21.
21.Y. Lill and B. Hecht, Appl. Phys. Lett. 84, 1665 (2004).
http://dx.doi.org/10.1063/1.1667591
22.
22.T. Christ, F. Kulzer, P. Bordat, and T. Basché, Angew. Chem., Int. Ed. 40, 4192 (2001).
http://dx.doi.org/10.1002/1521-3773(20011119)40:22<4192::AID-ANIE4192>3.3.CO;2-4
23.
23.A. Renn, J. Seelig, and V. Sandoghdar, Mol. Phys. 104, 409 (2006).
http://dx.doi.org/10.1080/00268970500361861
24.
24.F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, Phys. Rev. Lett. 94, 023005 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.023005
25.
25.J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, Phys. Rev. Lett. 95, 117401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.117401
26.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/20/10.1063/1.3013843
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Principle of the experiment. (a) Single-molecule energy levels. (b) Photons emitted through the transition are detected with a confocal microscope. The single-molecule fluorescence time trace (b) reveals dark periods with durations on the order of the triplet-state lifetime , corresponding to quantum jumps to the triplet state by ISC. The displayed single-molecule fluorescence signal represents the output of the photon-counting detector (D) without any binning (red bars). (c) The quantum-jump detection triggers an acousto-optical modulator (AOM), used as an on-off switch for the excitation laser. If no photon is detected during a time window of duration , the laser is switched off for a duration longer than . The curve in green shows the AOM command for the fluorescence time trace represented in (b). The characteristic response time of the AOM is , much shorter than all other time constants of the experiment.

Image of FIG. 2.

Click to view

FIG. 2.

[(a) and (b)] Experimental results for DiI represented as accumulated probability distributions. is the probability that a single molecule has not photobleached before the detection of photons (before a survival time ). The statistics correspond to a set of 56 molecules without the feedback loop (blue points) and another set of 56 molecules with the feedback loop running (red points) with and . (c) Photostability enhancement factor as a function of the time constant of the feedback loop. For each value of , the statistics of the numbers of detected photons are measured for 50 molecules, with and without the feedback loop. The maximum value is obtained for the probability distributions displayed in (a). The solid line represents the value of factor given by Eq. (1) with .

Image of FIG. 3.

Click to view

FIG. 3.

Photostability enhancement for terrylene, corresponding to . Statistics are measured with a set of 72 molecules without the feedback loop (blue points) and another set of 57 molecules running the feedback loop (red points), with and .

Loading

Article metrics loading...

/content/aip/journal/apl/93/20/10.1063/1.3013843
2008-11-20
2014-04-18

Abstract

We report an optical technique that yields an enhancement of single-molecule photostability by greatly suppressing photobleaching pathways which involve photoexcitation from the triplet state. This is accomplished by dynamically switching off the excitation laser when a quantum jump of the molecule to the triplet state is optically detected. The resulting improvement in photostability unambiguously confirms the importance of photoexcitation from the triplet state in photobleaching dynamics and will allow the investigation of new phenomena at the single-molecule level.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/20/1.3013843.html;jsessionid=v5sulqlt2ep6.x-aip-live-06?itemId=/content/aip/journal/apl/93/20/10.1063/1.3013843&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhancing single-molecule photostability by optical feedback from quantum jump detection
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/20/10.1063/1.3013843
10.1063/1.3013843
SEARCH_EXPAND_ITEM