1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/23/10.1063/1.3045950
1.
1.T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stravrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, Nat. Phys. 2, 408 (2006).
2.
2.F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, Phys. Rev. Lett. 92, 076401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.076401
3.
3.M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, Science 316, 1312 (2007).
http://dx.doi.org/10.1126/science.1139831
4.
4.S. C. Benjamin, D. E. Browne, J. Fitzsimons, and J. J. L. Morton, New J. Phys. 8, 141 (2006).
http://dx.doi.org/10.1088/1367-2630/8/8/141
5.
5.L. Childress, J. M. Taylor, A. S. Sorensen, and M. D. Lukin, Phys. Rev. A 72, 052330 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.052330
6.
6.J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, Nat. Phys. 4, 810 (2008).
7.
7.Y. -S. Park, A. K. Cook, and H. Wang, Nano Lett. 6, 2075 (2006).
http://dx.doi.org/10.1021/nl061342r
8.
8.Y. Shen, T. M. Sweeney, and H. Wang, Phys. Rev. B 77, 033201 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.033201
9.
9.P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, Adv. Mater. (Weinheim, Ger.) 17, 2427 (2005).
http://dx.doi.org/10.1002/adma.200500752
10.
10.C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, Appl. Phys. Lett. 91, 201112 (2007).
http://dx.doi.org/10.1063/1.2813023
11.
11.E. Yablonovitch, D. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, Appl. Phys. Lett. 56, 2419 (1990).
http://dx.doi.org/10.1063/1.102896
12.
12.G. Davies, S. C. Lawson, A. T. Collins, A. Mainwood, and S. J. Sharp, Phys. Rev. B 46, 13157 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.13157
13.
13.R. Loudon, Adv. Phys. 13, 423 (1964).
http://dx.doi.org/10.1080/00018736400101051
14.
14.K. Rivoire, A. Faraon, and J. Vuckovic, Appl. Phys. Lett. 93, 063103 (2008).
http://dx.doi.org/10.1063/1.2971200
15.
15.T. Kippenberg, S. Spillane, and K. J. Vahala, Appl. Phys. Lett. 85, 6113 (2004).
http://dx.doi.org/10.1063/1.1833556
16.
16.See EPAPS Document No. for specific geometry used in the simulation and for the full derivation. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.[Supplementary Material]
17.
17.A. T. Collins, M. Thomaz, and M. Jorge, J. Phys. C 16, 2177 (1983).
http://dx.doi.org/10.1088/0022-3719/16/11/020
18.
18.G. Davies, J. Phys. C 7, 3797 (1974).
http://dx.doi.org/10.1088/0022-3719/7/20/019
19.
19.L. -M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature (London) 414, 413 (2001).
http://dx.doi.org/10.1038/35106500
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/23/10.1063/1.3045950
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Waveguide structure before epitaxial lift-off. (b) SEM image of an etched wide waveguide before lift-off. ECR etch conditions: gases with 15/10/2 SCCM flow (SCCM denotes standard cubic centimeter per minute), 200 W microwave power, 45 W rf power. (c) Waveguide structure after lift-off and adhesion to diamond. (d) Optical excitation of NV centers through an waveguide. Implantation regions defined by the TEM grid and the dark sector boundary are clearly observed in the NV PL. (e) Sector boundary observed in the waveguide-excited PL in HPHT2. Spectra taken with 532 nm excitation from the top of the waveguide show the 637 nm and 575 nm ZPL lines in both sectors.

Image of FIG. 2.

Click to view

FIG. 2.

(a) A TE-polarized 532 nm laser is coupled into the overhanging region of a 250 nm GaP membrane on diamond and NV PL is imaged on a CCD camera. (b) Representative spectra collected from the top of the membrane for membrane thicknesses of 256 and 128 nm for TM excitation. (c) The ratio of the electric field strength in the top 100 nm of the diamond and in the GaP waveguide for various membrane thicknesses. Red (Blue) dots: TE (TM) experiment. Dotted lines: Red (Blue) TE (TM) calculation for a GaP waveguide on top of diamond. Solid lines: Red (Blue) TE (TM) calculation, which includes a 4.7 nm air gap between the GaP and diamond. Inset: Simulated TE/TM electric field intensity in a wide, 120 nm thick waveguide (no air gap).

Image of FIG. 3.

Click to view

FIG. 3.

(a) NV PL from a waveguide excited at 637 nm on sample HPHT3. (b) Decay of the PL in the waveguide due to scattering loss. The measurement length is limited to the length of the diamond sector.

Loading

Article metrics loading...

/content/aip/journal/apl/93/23/10.1063/1.3045950
2008-12-12
2014-04-18

Abstract

The optical coupling of guided modes in a GaPwaveguide to nitrogen-vacancy (NV) centers in diamond is demonstrated. The electric field penetration into diamond and the loss of the guided mode are measured. The results indicate that the GaP-diamond system could be useful in realizing coupled microcavity-NV devices for quantum information processing in diamond.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/23/1.3045950.html;jsessionid=3vp03nmvcv1o3.x-aip-live-01?itemId=/content/aip/journal/apl/93/23/10.1063/1.3045950&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/23/10.1063/1.3045950
10.1063/1.3045950
SEARCH_EXPAND_ITEM