1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/24/10.1063/1.3043682
1.
1.F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, Science 265, 1684 (1994).
http://dx.doi.org/10.1126/science.265.5179.1684
2.
2.T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, and T. Someya, Proc. Natl. Acad. Sci. U.S.A. 105, 4976 (2008).
http://dx.doi.org/10.1073/pnas.0708340105
3.
3.H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science 290, 2123 (2000).
http://dx.doi.org/10.1126/science.290.5499.2123
4.
4.S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature (London) 393, 49 (1998).
http://dx.doi.org/10.1038/29954
5.
5.T. Durkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, Nano Lett. 4, 35 (2004).
http://dx.doi.org/10.1021/nl034841q
6.
6.E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Gruner, Nano Lett. 5, 757 (2005).
http://dx.doi.org/10.1021/nl050254o
7.
7.E. S. Snow, P. M. Campbell, M. G. Ancona, and J. P. Novak, Appl. Phys. Lett. 86, 033105 (2005).
http://dx.doi.org/10.1063/1.1854721
8.
8.Y. Zhou, A. Gaur, S. Hur, C. Kocabas, M. A. Meitl, M. Shim, and J. A. Rogers, Nano Lett. 4, 2031 (2004).
http://dx.doi.org/10.1021/nl048905o
9.
9.S. Hur, M. Yoon, A. Gaur, M. Shim, A. Facchetti, T. J. Marks, and J. A. Rogers, J. Am. Chem. Soc. 127, 13808 (2005).
http://dx.doi.org/10.1021/ja0553203
10.
10.Q. Cao, M. Xia, M. Shim, and J. A. Rogers, Adv. Funct. Mater. 16, 2355 (2006).
http://dx.doi.org/10.1002/adfm.200600539
11.
11.Q. Cao, S. Hur, Z. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, and J. A. Rogers, Adv. Mater. (Weinheim, Ger.) 18, 304 (2006).
http://dx.doi.org/10.1002/adma.200501740
12.
12.D. R. Hines, S. Mezhenny, M. Breban, E. D. Williams, V. W. Ballarotto, G. Esen, A. Southard, and M. S. Fuhrer, Appl. Phys. Lett. 86, 163101 (2005).
http://dx.doi.org/10.1063/1.1901809
13.
13.S. Rosenblatt, H. Lin, V. Sazonova, S. Tiwari, and P. L. McEuen, Appl. Phys. Lett. 87, 153111 (2005).
http://dx.doi.org/10.1063/1.2103391
14.
14.A. A. Pesetski, J. E. Baumgardner, E. Folk, J. X. Przybysz, J. D. Adam, and H. Zhang, Appl. Phys. Lett. 88, 113103 (2006).
http://dx.doi.org/10.1063/1.2185007
15.
15.S. Li, Z. Yu, S. Yen, W. C. Tang, and P. J. Burke, Nano Lett. 4, 753 (2004).
http://dx.doi.org/10.1021/nl0498740
16.
16.J. Kong, A. M. Cassella, and H. Dai, Chem. Phys. Lett. 292, 567 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00745-3
17.
17.S. Huang, X. Cai, and J. Liu, J. Am. Chem. Soc. 125, 5636 (2003).
http://dx.doi.org/10.1021/ja034475c
18.
18.P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, Chem. Phys. Lett. 313, 91 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01029-5
19.
19.J. Vaillancourt, X. Lu, X. Han, and D. C. Janzen, Electron. Lett. 42, 1365 (2006).
http://dx.doi.org/10.1049/el:20062295
20.
20.X. Han, D. Janzen, J. Vaillancourt, and X. Lu, Micro & Nano Lett. 2, 96 (2007).
22.
22.Optomec product (http://www.optomec.com/site/m3d_2).
23.
23.J. Lee, M. J. Panzre, Y. He, T. Lodge, and C. D. Frisbie, J. Am. Chem. Soc. 129, 4532 (2007).
http://dx.doi.org/10.1021/ja070875e
24.
24.S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, New York, 2006), pp. 348349.
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/24/10.1063/1.3043682
Loading
/content/aip/journal/apl/93/24/10.1063/1.3043682
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/93/24/10.1063/1.3043682
2008-12-15
2014-07-31

Abstract

We report a flexible carbon nanotube(CNT)thin-film transistor(TFT) fabricated solely by ink-jet printing technology. The TFT is top gate configured, consisting of source and drain electrodes, a carrier transport layer based on an ultrapure, high-density CNTthin film, an ion-gel gate dielectric layer, and a poly(3,4-ethylenedioxythiophene) top gate electrode. All the TFT elements are ink-jet printed at room temperature on a polyimide substrate without involving any photolithography patterning or surface pretreatment steps. This CNT-TFT exhibits a high operating frequency of over 5 GHz and an on-off ratio of over 100. Such an all-ink-jet-printed process eliminates the need for lithography, vacuum processing, and metallization procedures and thus provides a promising technology for low-cost, high-throughput fabrication of large-area high-speed flexible electronic circuits on virtually any desired flexible substrate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/24/1.3043682.html;jsessionid=bdh0t834l69n.x-aip-live-03?itemId=/content/aip/journal/apl/93/24/10.1063/1.3043682&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/24/10.1063/1.3043682
10.1063/1.3043682
SEARCH_EXPAND_ITEM