1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Crystallinity improvement of benzodithiophene-dimer films for organic field-effect transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/4/10.1063/1.2958341
1.
1.S. R. Forrest, Nature (London) 428, 911 (2004).
http://dx.doi.org/10.1038/nature02498
2.
2.H. Klauk, M. Halik, U. Zscieschang, G. Schmid, and W. Radlik, J. Appl. Phys. 92, 5259 (2002).
http://dx.doi.org/10.1063/1.1511826
3.
3.S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, Appl. Phys. Lett. 88, 162109 (2006).
http://dx.doi.org/10.1063/1.2196475
4.
4.W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tung, F. Y. Yang, D. Y. Shu, and C. C. Liao, Appl. Phys. Lett. 89, 112126 (2006).
http://dx.doi.org/10.1063/1.2354426
5.
5.Y. Qiu, Y. Hu, G. Dong, L. Wang, J. Xie, and Y. Ma, Appl. Phys. Lett. 83, 1644 (2003).
http://dx.doi.org/10.1063/1.1604193
6.
6.C. R. Kagan, A. Afzail, and T. O. Graham, Appl. Phys. Lett. 86, 193505 (2005).
http://dx.doi.org/10.1063/1.1924890
7.
7.A. Facchetti, J. Letizia, M. H. Yoon, M. Mushrush, H. E. Katz, and T. J. Marks, Chem. Mater. 16, 4715 (2004).
8.
8.K. Xiao, Y. Liu, T. Qi, W. Zhang, F. Wang, J. Gao, W. Qiu, Y. Ma, G. Cui, S. Chen, X. Zhan, G. Yu, J. Qin, W. Hu, and D. Zhu, J. Am. Chem. Soc. 127, 13281 (2005).
http://dx.doi.org/10.1021/ja052816b
9.
9.K. Takimiya, H. Ebata, K. Sakamoto, T. Izawa, T. Otsubo, and Y. Kunugi, J. Am. Chem. Soc. 128, 12604 (2006).
http://dx.doi.org/10.1021/ja064052l
10.
10.R. M. Kellog, M. B. Groen, and H. Wynberg, J. Org. Chem. 32, 3093 (1967).
11.
11.Y. Nishide, M. Saito, T. Aiba, Y. Inagaki, Y. Doge, and K. Tanaka, J. Org. Chem. 72, 9141 (2007).
12.
12.K. Yamaguchi, K. Nakashima, S. Takamiya, M. Minami, Y. Doge, Y. Nishide, H. Osuga, K. Uno, C. Nakamoto, and I. Tanaka, Jpn. J. Appl. Phys., Part 2 46, L727 (2007).
http://dx.doi.org/10.1143/JJAP.46.L727
13.
13.J. H. Seo, D. S. Park, S. W. Cho, C. Y. Kim, W. C. Jang, C. N. Whang, K.-H. Yoo, G. S. Chang, T. Pedersen, A. Moewes, K. H. Chae, and S. J. Cho, Appl. Phys. Lett. 89, 163505 (2006).
http://dx.doi.org/10.1063/1.2363940
14.
14.A. S. Killampali and J. R. Engstrom, Appl. Phys. Lett. 88, 143125 (2006).
http://dx.doi.org/10.1063/1.2182012
15.
15.M. Yoshida, S. Uemura, T. Kodzasa, T. Kamata, M. Matsuzawa, and T. Kawai, Synth. Met. 137, 967 (2003).
http://dx.doi.org/10.1016/S0379-6779(02)00958-X
16.
16.B.-N. Park, S. Seo, and P. G. Evans, J. Phys. D: Appl. Phys. 40, 3506 (2007).
http://dx.doi.org/10.1088/0022-3727/40/11/037
17.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/4/10.1063/1.2958341
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The molecular structure of BDT dimmer. Two BDT monomers are connected with an olefin bond.

Image of FIG. 2.

Click to view

FIG. 2.

AFM images of initial growth stages of pentacene films deposited on HMDS-treated surfaces. (a) 2-ML-thick 2D islands are formed. (b) The surface is almost completely covered and second-layer islands are formed. (c) Rough 3D structures are formed. (d) Dendritic grain structure is formed.

Image of FIG. 3.

Click to view

FIG. 3.

AFM images of BDT-dimer films evaporated on (a) -thick pentacene CCL and (b) -thick PMMA buffer layer.

Image of FIG. 4.

Click to view

FIG. 4.

XRD pattern of the BDT-dimer film deposited on -thick pentacene CCL. The peaks at , 19.1°, 28.8°, 38.8°, and 49.1° denoted as 1, 2, 3, 4, and 5, respectively, are from crystalline planes whose distance is , and those at and 43.9°, denoted as and , respectively, are from planes of . The inset shows characteristics of the BDT-dimer FET with -thick pentacene CCL.

Image of FIG. 5.

Click to view

FIG. 5.

Histograms showing the carrier mobility distribution of (a) BDT-dimer FETs and (b) pentacene FETs.

Loading

Article metrics loading...

/content/aip/journal/apl/93/4/10.1063/1.2958341
2008-07-28
2014-04-17

Abstract

We have significantly improved the crystallinity of vacuum-evaporated benzodithiophene (BDT)-dimer films using pentacene crystallinity control layers. The pentacene molecules evaporated on hexamethyldisilazane-treated surfaces first form many small islands. Then, the islands grow two dimensionally. We used thin pentacene films with surface coverage of approximately 90% as crystallinity control layers, and deposited -thick BDT-dimer films on them. Micron-scale planar grains are observed in atomic force microscopy images of the BDT-dimer films. The highly anisotropic shape of the grains indicates that the BDT-dimer films of good crystallinity have been obtained. The field-effect transistors based on the BDT-dimer films showed excellent hole mobility of at maximum.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/4/1.2958341.html;jsessionid=23rkp8psdleuo.x-aip-live-02?itemId=/content/aip/journal/apl/93/4/10.1063/1.2958341&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Crystallinity improvement of benzodithiophene-dimer films for organic field-effect transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/4/10.1063/1.2958341
10.1063/1.2958341
SEARCH_EXPAND_ITEM