1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/7/10.1063/1.2967471
1.
1.C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
2.
2.N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wedl, Science 258, 1474 (1992).
http://dx.doi.org/10.1126/science.258.5087.1474
3.
3.G. Yu, J. Gao, J. C. Hemmelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
4.
4.C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).
http://dx.doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
5.
5.X. Yang, J. Loos, S. C. Veenstra, W. J. N. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, Nano Lett. 5, 579 (2005).
http://dx.doi.org/10.1021/nl048120i
6.
6.G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
7.
7.K. Kim, J. Liu, M. A. G. Namboothiry, and D. L. Carroll, Appl. Phys. Lett. 90, 163511 (2007).
http://dx.doi.org/10.1063/1.2730756
8.
8.S. -S. Kim, S. -I. Na, J. Jo, G. Tae, and D. -Y. Kim, Adv. Mater. (Weinheim, Ger.) 19, 4410 (2007).
http://dx.doi.org/10.1002/adma.200702040
9.
9.C. Winder and N. S. Sariciftci, J. Mater. Chem. 14, 1077 (2004).
http://dx.doi.org/10.1039/b306630d
10.
10.X. Wang, E. Perzon, F. Oswald, F. Langa, S. Admassie, M. R. Andersson, and O. Inganäs, Adv. Funct. Mater. 15, 1665 (2005).
http://dx.doi.org/10.1002/adfm.200500114
11.
11.M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. (Weinheim, Ger.) 18, 789 (2006).
http://dx.doi.org/10.1002/adma.200501717
12.
12.S. -I. Na, S. -S. Kim, S. -S. Kwon, J. Jo, J. Kim, T. Lee, and D. -Y. Kim, Appl. Phys. Lett. 91, 173509 (2007).
http://dx.doi.org/10.1063/1.2802561
13.
13.C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, Appl. Phys. Lett. 88, 133108 (2006).
http://dx.doi.org/10.1063/1.2188600
14.
14.J. Y. Kim, S. H. Kim, H. -H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater. (Weinheim, Ger.) 18, 572 (2006).
http://dx.doi.org/10.1002/adma.200501825
15.
15.A. J. Morfa, K. L. Rowlen, T. H. Reilly III, M. J. Romero, and J. van de Lagemaat, Appl. Phys. Lett. 92, 013504 (2008).
http://dx.doi.org/10.1063/1.2823578
16.
16.J. D. Driskell, R. J. Lipert, and M. D. Porter, J. Phys. Chem. 110, 17444 (2006).
17.
17.D. W. Pohl, Near-Field Optics and Surface Plasmon Polaritons (Springer, Heidelberg, 2001).
18.
18.Y. -C. Nah, S. -S. Kim, J. -H. Park, and D. -Y. Kim, Electrochem. Solid-State Lett. 10, J12 (2007).
http://dx.doi.org/10.1149/1.2382261
19.
19.Y. -C. Nah, S. -S. Kim, J. -H. Park, H. -J. Park, J. Jo, and D. -Y. Kim, Electrochem. Commun. 9, 1542 (2007).
20.
20.H. -J. Park, D. Vak, Y. -Y. Noh, B. Lim, and D. -Y. Kim, Appl. Phys. Lett. 90, 161107 (2007).
http://dx.doi.org/10.1063/1.2721134
21.
21.B. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys. 96, 7519 (2004).
http://dx.doi.org/10.1063/1.1812589
22.
22.S. Uemura, M. Yoshida, T. Kodzasa, K. Yase, and T. Kamata, Synth. Met. 137, 1443 (2003).
23.
23.S. -S. Kim, Y. -C. Nah, Y. -Y. Noh, J. Jo, and D. -Y. Kim, Electrochim. Acta 51, 3814 (2006).
http://dx.doi.org/10.1016/j.electacta.2005.10.047
24.
24.H. Kim and B. N. Popov, Electrochem. Solid-State Lett. 7, A71 (2004).
http://dx.doi.org/10.1149/1.1648611
25.
25.C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
26.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/7/10.1063/1.2967471
Loading
/content/aip/journal/apl/93/7/10.1063/1.2967471
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/93/7/10.1063/1.2967471
2008-08-22
2014-08-22

Abstract

To enhance solar harvesting in organic solar cells, uniform-sized metalnanoparticles of were incorporated to the device via pulse-current electrodeposition, which is a kind of simple and quick solution process that can control the density and size of metalnanoparticles. By incorporating plasmonicAgnanoparticles on surface modified transparent electrodes, overall power conversion efficiency was increased from 3.05% to 3.69%, mainly resulting from the improved photocurrent density as a result of enhanced absorption of the photoactive conjugate polymer due to the high electromagnetic field strength in the vicinity of the excited surface plasmons.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/7/1.2967471.html;jsessionid=1qy8uubxo64r0.x-aip-live-02?itemId=/content/aip/journal/apl/93/7/10.1063/1.2967471&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/7/10.1063/1.2967471
10.1063/1.2967471
SEARCH_EXPAND_ITEM