1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Efficient all-polymer solar cells based on blend of tris(thienylenevinylene)-substituted polythiophene and poly[perylene diimide-alt-bis(dithienothiophene)]
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/93/7/10.1063/1.2975160
1.
1.G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
2.
2.S. Gunes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. (Washington, D.C.) 107, 1324 (2007).
http://dx.doi.org/10.1021/cr050149z
3.
3.C. Winder and N. S. Sariciftci, J. Mater. Chem. 14, 1077 (2004).
http://dx.doi.org/10.1039/b306630d
4.
4.E. Bundgaard and F. C. Krebs, Sol. Energy Mater. Sol. Cells 91, 954 (2007).
http://dx.doi.org/10.1016/j.solmat.2007.01.015
5.
5.J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. -Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007).
http://dx.doi.org/10.1126/science.1141711
6.
6.G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
7.
7.F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 715 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.013
8.
8.M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).
http://dx.doi.org/10.1063/1.2359579
9.
9.J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, Nature (London) 376, 498 (1995).
http://dx.doi.org/10.1038/376498a0
10.
10.A. C. Arias, J. D. MacKenzie, R. Stevenson, J. J. M. Halls, M. Inbasekaran, E. P. Woo, D. Richards, and R. H. Friend, Macromolecules 34, 6005 (2001).
http://dx.doi.org/10.1021/ma010240e
11.
11.Y. Kim, S. Cook, S. A. Choulis, J. Nelson, J. R. Durrant, and D. D. C. Bradley, Chem. Mater. 16, 4812 (2004).
http://dx.doi.org/10.1021/cm049585c
12.
12.S. C. Veenstra, W. J. H. Verhees, J. M. Kroon, M. M. Koetse, J. Sweelssen, J. J. A. M. Bastiaansen, H. F. M. Schoo, X. Yang, A. Alexeev, J. Loos, U. S. Schubert, and M. M. Wienk, Chem. Mater. 16, 2503 (2004).
http://dx.doi.org/10.1021/cm049917d
13.
13.A. J. Breeze, Z. Schlesinger, S. A. Carter, H. Tillmann, and H. -H. Horhold, Sol. Energy Mater. Sol. Cells 83, 263 (2004).
http://dx.doi.org/10.1016/j.solmat.2004.02.029
14.
14.T. Kietzke, H. -H. Horhold, and D. Neher, Chem. Mater. 17, 6532 (2005).
http://dx.doi.org/10.1021/cm050148n
15.
15.L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, Nature (London) 434, 194 (2005).
http://dx.doi.org/10.1038/nature03376
16.
16.X. W. Zhan, Z. A. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow, Y. F. Li, D. B. Zhu, B. Kippelen, and S. R. Marder, J. Am. Chem. Soc. 129, 7246 (2007).
http://dx.doi.org/10.1021/ja071760d
17.
17.J. H. Hou, Z. A. Tan, Y. Yan, Y. J. He, C. H. Yang, and Y. F. Li, J. Am. Chem. Soc. 128, 4911 (2006).
http://dx.doi.org/10.1021/ja060141m
18.
18.Y. F. Li and Y. P. Zou, Adv. Mater. (Weinheim, Ger.)20, 2952 (2008).
http://dx.doi.org/10.1002/adma.200800606
19.
19.J. J. M. Halls, J. Cornill, D. A. dos Santos, R. Silbey, D. H. Hwang, A. B. Holmes, J. L. Brédas, and R. H. Friend, Phys. Rev. B 60, 5721 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.5721
20.
20.E. E. Neuteboom, S. C. J. Meskers, P. A. Van Hal, J. K. J. Van Duren, E. W. Meijer, R. A. J. Janssen, H. Dupin, G. Pourtois, J. Cornil, R. Lazzaroni, J. L. Brédas, and D. Beljonne, J. Am. Chem. Soc. 125, 8625 (2003).
http://dx.doi.org/10.1021/ja034926t
21.
21.G. Yu, C. Zhang, and A. J. Heeger, Appl. Phys. Lett. 64, 1540 (1994).
http://dx.doi.org/10.1063/1.111885
22.
22.M. Jorgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.005
23.
23.F. C. Krebs and H. Spanggaard, Chem. Mater. 17, 5235 (2005).
http://dx.doi.org/10.1021/cm051320q
24.
24.X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, Nano Lett. 5, 579 (2005).
http://dx.doi.org/10.1021/nl048120i
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/7/10.1063/1.2975160
Loading
/content/aip/journal/apl/93/7/10.1063/1.2975160
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/93/7/10.1063/1.2975160
2008-08-22
2015-03-06

Abstract

A narrow band-gap alternating copolymer of perylene diimide and bis(dithienothiophene) (2) and a polythiophene derivative substituted by a tris(thienylenevinylene) conjugated side chain (4) are used as acceptor and donor, respectively, in all-polymer solar cells (SCs). The optimized device based on the blend of 4 and 2 in the ratio 3:1 (w/w) gives a short circuit current of and a power conversion efficiency of 1.48%, under simulated AM 1.5 illumination at . These values are among the highest values reported for all-polymer SCs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/93/7/1.2975160.html;jsessionid=havp10cfl4e8.x-aip-live-02?itemId=/content/aip/journal/apl/93/7/10.1063/1.2975160&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Efficient all-polymer solar cells based on blend of tris(thienylenevinylene)-substituted polythiophene and poly[perylene diimide-alt-bis(dithienothiophene)]
http://aip.metastore.ingenta.com/content/aip/journal/apl/93/7/10.1063/1.2975160
10.1063/1.2975160
SEARCH_EXPAND_ITEM