1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Direct observation of the charge carrier concentration in organic field-effect transistors by electron spin resonance
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/94/10/10.1063/1.3100193
1.
1.C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. (Weinheim, Ger.) 14, 99 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
2.
2.H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaad, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature (London) 401, 685 (1999).
http://dx.doi.org/10.1038/44359
3.
3.M. Surin, Ph. Leclere, R. Lazzaroni, J. D. Yuen, G. Wang, D. Moses, A. J. Heeger, S. Cho, and K. Lee, J. Appl. Phys. 100, 033712 (2006).
http://dx.doi.org/10.1063/1.2222065
4.
4.A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, and H. von Seggern, Phys. Rev. Lett. 91, 157406 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.157406
5.
5.F. Cicoira and C. Santato, Adv. Funct. Mater. 17, 3421 (2007).
http://dx.doi.org/10.1002/adfm.200700174
6.
6.P. J. Brown, H. Sirringhaus, M. Harrison, M. Shkunov, and R. H. Friend, Phys. Rev. B 63, 125204 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.125204
7.
7.Y. Furukawa, J. Yamamoto, D. C. Cho, and T. Mori, Macromol. Symp. 205, 9 (2004).
http://dx.doi.org/10.1002/masy.200450102
8.
8.A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Rev. Mod. Phys. 60, 781 (1988).
http://dx.doi.org/10.1103/RevModPhys.60.781
9.
9.Z. Q. Li, G. M. Wang, N. Sai, D. Moses, M. C. Martin, M. Di Ventra, A. J. Heeger, and D. N. Basov, Nano Lett. 6, 224 (2006).
http://dx.doi.org/10.1021/nl052166+
10.
10.T. Manaka, E. Lim, R. Tamura, and M. Iwamoto, Nat. Photonics 1, 581 (2007).
11.
11.S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969).
12.
12.L. Bürgi, H. Sirringhaus, and R. H. Friend, Appl. Phys. Lett. 80, 2913 (2002).
http://dx.doi.org/10.1063/1.1470702
13.
13.K. Marumoto, Y. Muramatsu, S. Ukai, H. Ito, and S. Kuroda, J. Phys. Soc. Jpn. 73, 1673 (2004).
http://dx.doi.org/10.1143/JPSJ.73.1673
14.
14.K. Marumoto, Y. Muramatsu, Y. Nagano, T. Iwata, S. Ukai, H. Ito, S. Kuroda, Y. Shimoi, and S. Abe, J. Phys. Soc. Jpn. 74, 3066 (2005).
http://dx.doi.org/10.1143/JPSJ.74.3066
15.
15.S. Watanabe, K. Ito, H. Tanaka, H. Ito, K. Marumoto, and S. Kuroda, Jpn. J. Appl. Phys., Part 2 46, L792 (2007).
http://dx.doi.org/10.1143/JJAP.46.L792
16.
16.K. Marumoto, S. Kuroda, T. Takenobu, and Y. Iwasa, Phys. Rev. Lett. 97, 256603 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.256603
17.
17.H. Matsui, T. Hasegawa, Y. Tokura, M. Hiraoka, and T. Yamada, Phys. Rev. Lett. 100, 126601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.126601
18.
18.The present measurements have been done by adopting the top-contact geometry, where we have to consider the carriers accumulated under the drain and source electrodes in addition to those accumulated in the channel region shown in Fig. 4(b). However, the total carrier concentration is formulated by the same form as Eq. (2) even for the top-contact FETs within the framework of the gradual channel approximation by adjusting the channel length to include the widths of the electrodes. Thus, there are no ambiguities arising from the geometry of the device in the present study.
19.
19.M. E. Gershenson, V. Podzorov, and A. F. Morpurgo, Rev. Mod. Phys. 78, 973 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.973
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/10/10.1063/1.3100193
Loading
/content/aip/journal/apl/94/10/10.1063/1.3100193
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/94/10/10.1063/1.3100193
2009-03-13
2014-10-22

Abstract

Charge carrier concentration in operating field-effect transistor(FET) of regioregular poly(3-hexylthiophene) has been directly determined by electron spin resonance(ESR).ESR signals of field-induced polarons are observed around under the application of negative gate-source voltage . Upon applying drain-source voltage , ESR intensity decreases linearly in the low region, reaching to about 50% of the initial intensity at the pinch-off point . For larger absolute values of , it becomes nearly independent. These behaviors are well explained by the change in the carrier concentration obtained by the FET theory using gradual channel approximation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/94/10/1.3100193.html;jsessionid=8212t5oon1vs.x-aip-live-03?itemId=/content/aip/journal/apl/94/10/10.1063/1.3100193&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Direct observation of the charge carrier concentration in organic field-effect transistors by electron spin resonance
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/10/10.1063/1.3100193
10.1063/1.3100193
SEARCH_EXPAND_ITEM