1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Light-induced charge transfer in hybrid composites of organic semiconductors and silicon nanocrystals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/94/11/10.1063/1.3086299
1.
1.C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).
http://dx.doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
2.
2.H. Hoppe and N. S. Sariciftci, J. Mater. Res. 19, 1924 (2004).
http://dx.doi.org/10.1557/JMR.2004.0252
3.
3.G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
4.
4.V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Adv. Funct. Mater. 16, 2016 (2006).
http://dx.doi.org/10.1002/adfm.200600489
5.
5.W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
http://dx.doi.org/10.1002/adfm.200500211
6.
6.M. Reyes-Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).
http://dx.doi.org/10.1063/1.2006986
7.
7.S. Günes and N. S. Sariciftci, Inorg. Chim. Acta 361, 581 (2008).
http://dx.doi.org/10.1016/j.ica.2007.06.042
8.
8.N. C. Greenham, X. G. Peng, and A. P. Alivisatos, Phys. Rev. B 54, 17628 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17628
9.
9.W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, J. Mater. Chem. 15, 2985 (2005).
http://dx.doi.org/10.1039/b501979f
10.
10.J. Knipping, H. Wiggers, B. Rellinghaus, P. Roth, D. Konjhodzic, and C. Meier, J. Nanosci. Nanotechnol. 4, 1039 (2004).
http://dx.doi.org/10.1166/jnn.2004.149
11.
11.K. Nishiguchi, X. Zhao, and S. Oda, J. Appl. Phys. 92, 2748 (2002).
http://dx.doi.org/10.1063/1.1497703
12.
12.L. Mangolini, E. Thimsen, and U. Kortshagen, Nano Lett. 5, 655 (2005).
http://dx.doi.org/10.1021/nl050066y
13.
13.A. R. Stegner, R. N. Pereira, K. Klein, H. Wiggers, M. S. Brandt, and M. Stutzmann, Physica B 401, 541 (2007).
http://dx.doi.org/10.1016/j.physb.2007.09.017
14.
14.A. R. Stegner, R. N. Pereira, K. Klein, R. Lechner, R. Dietmueller, M. S. Brandt, M. Stutzmann, and H. Wiggers, Phys. Rev. Lett. 100, 026803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.026803
15.
15.R. Lechner, H. Wiggers, A. Ebbers, J. Steiger, M. S. Brandt, and M. Stutzmann, Phys. Status Solidi (RRL) 1, 262 (2007).
16.
16.R. Lechner, A. R. Stegner, R. N. Pereira, R. Dietmueller, M. S. Brandt, A. Ebbers, M. Trocha, H. Wiggers, and M. Stutzmann, J. Appl. Phys. 104, 053701 (2008).
http://dx.doi.org/10.1063/1.2973399
17.
17.V. Gowrishankar, S. R. Scully, M. D. McGehee, Q. Wang, and H. M. Branz, Appl. Phys. Lett. 89, 252102 (2006).
http://dx.doi.org/10.1063/1.2408641
18.
18.P. -J. Alet, S. Palacin, P. Roca I Cabarrocas, B. Kalache, M. Firon, and R. de Bettignies, Eur. Phys. J.: Appl. Phys. 36, 231 (2006).
19.
19.M. Pientka, V. Dyakonov, D. Meissner, A. Rogach, D. Talapin, H. Weller, L. Lutsen, and D. Vanderzande, Nanotechnology 15, 163 (2004).
http://dx.doi.org/10.1088/0957-4484/15/1/032
20.
20.N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992).
http://dx.doi.org/10.1126/science.258.5087.1474
21.
21.J. De Ceuster, E. Goovaerts, A. Bouwen, J. C. Hummelen, and V. Dyakonov, Phys. Rev. B 64, 195206 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.195206
22.
22.M. Al-Ibrahim, H. -K. Roth, M. Schroedner, A. Konkin, A. Zhokhavets, G. Gobsch, P. Scharff, and S. Sensfuss, Org. Electron. 6, 65 (2005).
http://dx.doi.org/10.1016/j.orgel.2005.02.004
23.
23.S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).
http://dx.doi.org/10.1021/ja01269a023
24.
24.M. Gjukic, R. Lechner, and M. Stutzmann, German Patent Application No. 102005056446 (pending).
25.
25.D. Chirvase, Z. Chiguvare, A. Knipper, J. Parisi, V. Dyakonov, and J. C. Hummelen, Synth. Met. 138, 299 (2003).
http://dx.doi.org/10.1016/S0379-6779(03)00027-4
26.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/11/10.1063/1.3086299
Loading
/content/aip/journal/apl/94/11/10.1063/1.3086299
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/94/11/10.1063/1.3086299
2009-03-17
2014-09-16

Abstract

Charge transfer between silicon nanocrystals (Si-nc) and organic semiconductors has been investigated via light-induced electron spin resonance (LESR). Composites of Si-nc with the hole conductor poly(3-hexylthiophene) (P3HT) and with the electron acceptor [6,6]-phenyl--butyric acid methyl ester (PCBM) have been investigated. The LESR measurements allow one to quantify light-induced charge transfer between Si-nc and P3HT, which results in positive P3HT polarons. PCBM, in contrast, acts as an electron acceptor in composites with Si-nc, and after illumination, negative PCBM radicals are created. These results are discussed in terms of light-induced generation and separation of charge carriers in the hybridcomposites.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/94/11/1.3086299.html;jsessionid=159edvjgnhubs.x-aip-live-06?itemId=/content/aip/journal/apl/94/11/10.1063/1.3086299&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Light-induced charge transfer in hybrid composites of organic semiconductors and silicon nanocrystals
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/11/10.1063/1.3086299
10.1063/1.3086299
SEARCH_EXPAND_ITEM