1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Rapid prototyping encapsulation for polymer light-emitting lasers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/94/12/10.1063/1.3100406
1.
1.R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brëdas, M. Lögdlund, and W. R. Salaneck, Nature (London) 397, 121 (1999).
http://dx.doi.org/10.1038/16393
2.
2.N. Tessler, G. J. Denton, and R. H. Friend, Nature (London) 382, 695 (1996).
http://dx.doi.org/10.1038/382695a0
3.
3.G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
4.
4.M. Yan, L. J. Rothberg, F. Papadimitrakopoulos, M. E. Galvin, and T. M. Miller, Phys. Rev. Lett. 73, 744 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.744
5.
5.D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, Appl. Phys. Lett. 68, 2046 (1996).
http://dx.doi.org/10.1063/1.116298
6.
6.K. -C. Liu, Y. -H. Lu, Y. -H. Liao, and B. -S. Huang, Jpn. J. Appl. Phys. 47, 3162 (2008).
7.
7.A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, Appl. Phys. Lett. 83, 413 (2003).
http://dx.doi.org/10.1063/1.1594284
8.
8.M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, Appl. Phys. Lett. 81, 2929 (2002).
http://dx.doi.org/10.1063/1.1514831
9.
9.J. Granstrom, J. S. Swensen, J. S. Moon, G. Rowell, J. Yuen, and A. J. Heeger, Appl. Phys. Lett. 93, 193304 (2008).
http://dx.doi.org/10.1063/1.3006349
10.
10.E. Langereis, M. Creatore, S. B. S. Heil, M. C. M. Van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 89, 081915 (2006).
http://dx.doi.org/10.1063/1.2338776
11.
11.W. J. Potscavage, S. Yoo, B. Domercq, and B. Kippelen, Appl. Phys. Lett. 90, 253511 (2007).
http://dx.doi.org/10.1063/1.2751108
12.
12.A. P. Ghosh, L. J. Gerenser, C. M. Jarman, and J. E. Fornalik, Appl. Phys. Lett. 86, 223503 (2005).
http://dx.doi.org/10.1063/1.1929867
13.
13.F. L. Wong, M. K. Fung, S. L. Tao, S. L. Lai, W. M. Tsang, K. H. Kong, W. M. Choy, C. S. Lee, and S. T. Lee, J. Appl. Phys. 104, 014509 (2008).
http://dx.doi.org/10.1063/1.2940727
14.
14.H. -K. Kim, M. S. Kim, J. -W. Kang, J. -J. Kim, and M. -S. Yi, Appl. Phys. Lett. 90, 013502 (2007).
http://dx.doi.org/10.1063/1.2425021
15.
15.M. Schaepkens, T. W. Kim, A. G. Erlat, M. Yan, K. W. Flanagan, C. M. Heller, and P. A. McConnelee, J. Vac. Sci. Technol. A 22, 1716 (2004).
http://dx.doi.org/10.1116/1.1705646
16.
16.B. D. Lee, Y. -H. Cho, W. -J. Kim, M. H. Oh, J. H. Lee, and D. S. Zang, Appl. Phys. Lett. 90, 103518 (2007).
http://dx.doi.org/10.1063/1.2712776
17.
17.S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, Appl. Phys. Lett. 91, 261104 (2007).
http://dx.doi.org/10.1063/1.2826276
18.
18.E. Mele, A. Camposeo, R. Stabile, P. Del Carro, F. Di Benedetto, L. Persano, R. Cingolani, and D. Pisignano, Appl. Phys. Lett. 89, 131109 (2006).
http://dx.doi.org/10.1063/1.2357116
19.
19.L. Persano, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, and G. Lanzani, Appl. Phys. Lett. 88, 121110 (2006).
http://dx.doi.org/10.1063/1.2179611
20.
20.L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, Opt. Express 14, 1951 (2006).
http://dx.doi.org/10.1364/OE.14.001951
21.
21.L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, Appl. Phys. Lett. 89, 121111 (2006).
http://dx.doi.org/10.1063/1.2353822
22.
22.Fundamentals of Stereolithography, edited by P. F. Jacobs (SME, Dearborn, MI, 1992).
23.
23.P. Regoliosi, M. Guehl, G. Scarpa, P. Lugli, L. Persano, P. Del Carro, A. Camposeo, R. Cingolani, D. Pisignano, S. Bietti, E. Grilli, and M. Guzzi, Appl. Phys. Lett. 92, 253310 (2008).
http://dx.doi.org/10.1063/1.2953069
24.
24.Physical Properties of Polymers Handbook, edited by J. E. Mark (American Institute of Physics, Woodbury, NY, 1996).
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/12/10.1063/1.3100406
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Scheme of the St-L apparatus. (b) Photograph of the packaged device system including resin element, plastic o-ring, and quartz window. (c) and (d) are schemes of the cross-sectional views AA and BB marked in (b), respectively. Bottom-right dashed areas: St-L resin. Bottom-left dashed areas: polymer laser. Light areas: quartz for optical coupling. Arrow in (d): vacuum connection.

Image of FIG. 2.

Click to view

FIG. 2.

PL emission spectra of the laser device below (dashed line) and above (continuous lines) threshold acquired (from bottom to top) pumping at , 127, 250, 380, and , respectively. Inset: device peak emission intensity vs absorbed excitation fluence. The solid line is a linear fit to the experimental data.

Image of FIG. 3.

Click to view

FIG. 3.

Encapsulated device emission intensity vs wavelength and excitation position over a sample section of 1 mm. Samples excited with a pumping laser spot of 0.1 mm diameter.

Image of FIG. 4.

Click to view

FIG. 4.

Temporal behavior of the emission decay from the unpackaged (gray line) and packaged (black line) laser device. Excitation fluence: .

Loading

Article metrics loading...

/content/aip/journal/apl/94/12/10.1063/1.3100406
2009-03-26
2014-04-17

Abstract

Rapid prototyping of packaging elements realized by stereolithography for the encapsulation of plastic optoelectronic devices is demonstrated. We measure the operational lifetime behavior of a polymeric laser before and after the device packaging. The operational lifetime of a polymer vertical-cavity surface-emitting laser is increased by a factor of three upon continuous pumping at an excitation fluence three times larger than the lasing threshold, corresponding to an overall laser duration of more than h at a repetition rate of 10 Hz. These findings suggest rapid prototyping stereolithography as promising highly scalable technology for the encapsulation of organic light-emitting devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/94/12/1.3100406.html;jsessionid=ujus21jrbg6s.x-aip-live-02?itemId=/content/aip/journal/apl/94/12/10.1063/1.3100406&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Rapid prototyping encapsulation for polymer light-emitting lasers
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/12/10.1063/1.3100406
10.1063/1.3100406
SEARCH_EXPAND_ITEM