1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Single-crystal-like organic heterojunction with 40 nm thick charge accumulation layers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/94/14/10.1063/1.3118581
1.
1.C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
2.
2.C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
3.
3.P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001).
http://dx.doi.org/10.1063/1.1384001
4.
4.A. Dodabalapur, H. E. Katz, L. Torsi, and R. C. Haddon, Science 269, 1560 (1995).
http://dx.doi.org/10.1126/science.269.5230.1560
5.
5.J. Wang, H. Wang, X. Yan, H. Huang, and D. Yan, Appl. Phys. Lett. 87, 093507 (2005).
http://dx.doi.org/10.1063/1.2037204
6.
6.H. Alves, A. S. Molinari, H. Xie, and A. F. Morpurgo, Nature Mater. 7, 574 (2008).
http://dx.doi.org/10.1038/nmat2205
7.
7.X. Yan, J. Wang, H. Wang, H. Wang, and D. Yan, Appl. Phys. Lett. 89, 053510 (2006).
http://dx.doi.org/10.1063/1.2227714
8.
8.J. Dai, X. Jiang, H. Wang, and D. Yan, Thin Solid Films 516, 3320 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.09.043
9.
9.J. Wang, H. Wang, X. Yan, H. Huang, and D. Yan, Chem. Phys. Lett. 407, 87 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.03.072
10.
10.H. Wang, J. Wang, X. Yan, J. Shi, H. Tian, Y. Geng, and D. Yan, Appl. Phys. Lett. 88, 133508 (2006).
http://dx.doi.org/10.1063/1.2190445
11.
11.J. Shi, H. Wang, D. Song, H. Tian, Y. Geng, and D. Yan, Adv. Funct. Mater. 17, 397 (2007).
http://dx.doi.org/10.1002/adfm.200600950
12.
12.C. Videlot-Ackermann, J. Achermann, and F. Fages, Synth. Met. 157, 551 (2007).
http://dx.doi.org/10.1016/j.synthmet.2007.06.002
13.
13.S. L. Lai, M. Y. Chan, M. K. Fung, C. S. Lee, and S. T. Lee, J. Appl. Phys. 101, 014509 (2007).
http://dx.doi.org/10.1063/1.2426338
14.
14.B. Yu, F. Zhu, H. Wang, G. Li, and D. Yan, J. Appl. Phys. 104, 114503 (2008).
http://dx.doi.org/10.1063/1.3033485
15.
15.C. D. Dimitrakopoulos, A. R. Brown, and A. J. Pomp, J. Appl. Phys. 80, 2501 (1996).
http://dx.doi.org/10.1063/1.363032
16.
16.Z. Bao, A. J. Lovinger, and A. Dodabalapur, Appl. Phys. Lett. 69, 3066 (1996).
http://dx.doi.org/10.1063/1.116841
17.
17.Z. Bao, A. J. Lovinger, and A. Dodabalapour, Adv. Mater. (Weinheim, Ger.) 9, 42 (1997).
http://dx.doi.org/10.1002/adma.19970090108
18.
18.V. Podzorov, E. Menard, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 95, 226601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.226601
19.
19.D. Kurrle and J. Pflaum, Appl. Phys. Lett. 92, 133306 (2008).
http://dx.doi.org/10.1063/1.2896654
20.
20.H. Wang, F. Zhu, J. Yang, Y. Geng, and D. Yan, Adv. Mater. (Weinheim, Ger.) 19, 2168 (2007).
http://dx.doi.org/10.1002/adma.200602566
21.
21.F. Zhu, H. Wang, D. Song, K. Lou, and D. Yan, Appl. Phys. Lett. 93, 103308 (2008).
http://dx.doi.org/10.1063/1.2980023
22.
22.H. Wang, J. Wang, H. Huang, X. Yan, and D. Yan, Org. Electron. 7, 369 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.04.004
23.
23.G. Horowitz, R. Hajlaoui, H. Bouchriha, R. Bourguiga, and M. Hajlaoui, Adv. Mater. (Weinheim, Ger.) 10, 923 (1998).
http://dx.doi.org/10.1002/(SICI)1521-4095(199808)10:12<923::AID-ADMA923>3.0.CO;2-W
24.
24.G. Horowitz, J. Mater. Res. 19, 1946 (2004).
http://dx.doi.org/10.1557/JMR.2004.0266
25.
25.K. M. Lau, J. X. Tang, H. Y. Sun, C. S. Lee, S. T. Lee, and D. Yan, Appl. Phys. Lett. 88, 173513 (2006).
http://dx.doi.org/10.1063/1.2198484
26.
26.N. Shi and R. Ramprasad, Appl. Phys. Lett. 89, 102904 (2006).
http://dx.doi.org/10.1063/1.2339037
27.
27.K. C. Kao and W. Hwang, Electrical Transport in Solids: With Particular Reference to Organic Semiconductors (Pergamon, New York, 1981).
28.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/14/10.1063/1.3118581
Loading
/content/aip/journal/apl/94/14/10.1063/1.3118581
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/94/14/10.1063/1.3118581
2009-04-10
2014-09-18

Abstract

Single-crystal-like organic heterojunctionfilms of copper phthalocyanine (CuPc) and copper-hexadecafluoro-phthalocyanine were fabricated by weak-epitaxy-growth method. The intrinsic properties of organic heterojunction were revealed through threshold voltage shift of field-effect transistors and measurement of single-crystal-like diodes. At both sides of the heterojunction interface 40 nm thick charge accumulation layers formed, which showed that the long carriers’ diffusion length is due to the high crystallinity and low density of deep bulk traps of single-crystal-like films. This also indicated the electronic properties of organic heterojunction can be adjusted by controlling the growth condition.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/94/14/1.3118581.html;jsessionid=196hgvl5hphbe.x-aip-live-03?itemId=/content/aip/journal/apl/94/14/10.1063/1.3118581&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Single-crystal-like organic heterojunction with 40 nm thick charge accumulation layers
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/14/10.1063/1.3118581
10.1063/1.3118581
SEARCH_EXPAND_ITEM