1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/94/16/10.1063/1.3114416
1.
1.J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
http://dx.doi.org/10.1109/22.798002
2.
2.R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
http://dx.doi.org/10.1126/science.1058847
3.
3.D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4184
4.
4.D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
http://dx.doi.org/10.1126/science.1133628
5.
5.M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, Phys. Rev. B 73, 193103 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.193103
6.
6.B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, Appl. Phys. Lett. 90, 254106 (2007).
http://dx.doi.org/10.1063/1.2749865
7.
7.A. K. Azad, H. -T. Chen, A. J. Taylor, E. Akhadov, N. R. Weisse-Bernstein, and J. F. O’Hara, arXiv:0804.4880.
8.
8.N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, Th. Koschny, and C. M. Soukoulis, Opt. Lett. 30, 1348 (2005).
http://dx.doi.org/10.1364/OL.30.001348
9.
9.N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nature Mater. 7, 31 (2008).
http://dx.doi.org/10.1038/nmat2072
10.
10.P. Stellman, T. Buchner, W. J. Arora, and G. Barbastathis, J. Microelectromech. Syst. 16, 932 (2007).
http://dx.doi.org/10.1109/JMEMS.2007.896713
11.
11.M. C. Martin, Z. Hao, A. Liddle, E. H. Anderson, W. J. Padilla, D. Schurig, and D. R. Smith, Conference Proceedings of IEEE IRMMW-THz 2005 (unpublished).
12.
12.J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, Opt. Express 16, 1786 (2008).
http://dx.doi.org/10.1364/OE.16.001786
13.
13.C. M. Soukoulis, S. Linden, and M. Wegener, Science 315, 47 (2007).
http://dx.doi.org/10.1126/science.1136481
14.
14.W. J. Padilla, D. R. Smith, and D. N. Basov, J. Opt. Soc. Am. B 23, 404 (2006).
http://dx.doi.org/10.1364/JOSAB.23.000404
15.
15.X. G. Peralta, C. L. Arrington, J. D. Williams, A. Strikwerda, R. D. Averitt, W. J. Padilla, J. O’Hara, and I. Brener, Proceedings of MRS Spring Meeting, San Francisco, CA, 24–28 March 2008 (unpublished).
16.
16.J. F. O'Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Appl. Phys. Lett. 88, 251119 (2006).
http://dx.doi.org/10.1063/1.2216026
17.
17.CST MICROWAVE STUDIO 2008, Computer Simulation Technology, Wellesley Hills, MA, (www.cst.com).
18.
18.C. -Y. Chen, S. -C. Wu, and T. -J. Yen, Appl. Phys. Lett. 93, 034110 (2008).
http://dx.doi.org/10.1063/1.2957978
19.
19.J. F. O’Hara, E. Smirnova, H. -T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, J. Nanoelectron. Optoelectron. 2, 90 (2007).
http://dx.doi.org/10.1166/jno.2007.008
20.
20.R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, Opt. Express 16, 6537 (2008).
http://dx.doi.org/10.1364/OE.16.006537
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/16/10.1063/1.3114416
Loading
/content/aip/journal/apl/94/16/10.1063/1.3114416
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/94/16/10.1063/1.3114416
2009-04-24
2014-07-14

Abstract

A possible path for fabricating three-dimensional metamaterials with curved geometries at optical and infrared frequencies is to stack flexible metamaterial layers. We have fabricated highly uniform metamaterials at terahertz frequencies on large-area, low-stress, free-standing thick silicon nitride membranes. Their response remains comparable to that of similar structures on thick substrates as measured by the quality factor of the resonances. Transmission measurements with a Fourier transform infrared spectrometer highlight the advantage of fabricating high frequency metamaterials on thin membranes as etalon effects are eliminated. Releasing the membranes enables layering schemes and placement onto curved surfaces in order to create three-dimensional structures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/94/16/1.3114416.html;jsessionid=27cxh0pdcdmfc.x-aip-live-06?itemId=/content/aip/journal/apl/94/16/10.1063/1.3114416&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/16/10.1063/1.3114416
10.1063/1.3114416
SEARCH_EXPAND_ITEM