1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/94/17/10.1063/1.3125249
1.
1.D. Kleppner, Phys. Rev. Lett. 47, 233 (1981).
http://dx.doi.org/10.1103/PhysRevLett.47.233
2.
2.J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature (London) 386, 143 (1997).
http://dx.doi.org/10.1038/386143a0
3.
3.E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys. Rev.69, 37 (1946).
http://dx.doi.org/10.1103/PhysRev.69.37
4.
4.L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
5.
5.M. Fox, Quantum Optics: An Introduction (Oxford University Press, New York, 2006).
6.
6.P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett. 96, 113002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.113002
7.
7.W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424, 824 (2003).
http://dx.doi.org/10.1038/nature01937
8.
8.W. L. Barnes, J. Mod. Opt. 45, 661 (1998).
9.
9.K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nature Mater. 3, 601 (2004).
http://dx.doi.org/10.1038/nmat1198
10.
10.K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, Appl. Phys. Lett. 87, 071102 (2005).
http://dx.doi.org/10.1063/1.2010602
11.
11.B. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys. 96, 7519 (2004).
http://dx.doi.org/10.1063/1.1812589
12.
12.N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 82, 3095 (2003).
http://dx.doi.org/10.1063/1.1571979
13.
13.D. -K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. -S. Kwon, and E. Tamiya, Anal. Chem. 79, 1855 (2007).
http://dx.doi.org/10.1021/ac061909o
14.
14.T. Neal, K. Okamoto, and A. Scherer, Opt. Express 13, 5522 (2005).
http://dx.doi.org/10.1364/OPEX.13.005522
15.
15.J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, Phys. Rev. Lett. 93, 036404 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.036404
16.
16.N. C. Giebink and S. R. Forrest, Phys. Rev. B 77, 235215 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235215
17.
17.P. Andrew and W. L. Barnes, Science 306, 1002 (2004).
http://dx.doi.org/10.1126/science.1102992
18.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/17/10.1063/1.3125249
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Sample structure for PL measurement. The 2-nm-thick LiF–Ag cluster–LiF (LAL) structure consisted of a 1-nm LiF layer, Ag cluster, and 1-nm LiF layer. The reference sample included a 2-nm-thick LiF layer instead of LAL structure. (b) TEM images of Ag clusters on the LiF surface. Calculated surface coverage is 12.5%.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Absorption spectrum of the random array constituted of silver particles; spectra are recorded from the condition of samples 1–3. (b) Absorption spectra of samples 1 and 3. Localized SP occurred near 400 to 500 nm, as confirmed from Fig. 2(a). (c) Calculated SP penetration depth at the interface of , as a function of wavelength.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Room temperature PL spectra of samples 1–3 of different resonance wavelengths. Excitation wavelength was 266 nm. (b) PL transient detected at the peak of emission (530 nm in this case).

Image of FIG. 4.

Click to view

FIG. 4.

(a) UPS measurement results of samples of LiF/Al/quartz and LiF/Ag/LiF/Al/quartz. The determination of the effective work function of the each sample is shown. (b) characteristics of the conventional OLED and designed OLED with LAL structure on the surface of the cathode.

Loading

Article metrics loading...

/content/aip/journal/apl/94/17/10.1063/1.3125249
2009-04-27
2014-04-19

Abstract

The surface plasmon-enhanced spontaneous emission based on an organic light-emitting device is reported in this paper. For surface plasmon localization, silvernanoparticles were thermally deposited in a high vacuum on cathode that had a 1-nm-thick LiF spacer. Since plasmons provide a strong oscillator decay channel, time-resolved photoluminescence(PL) results displayed a 1.75-fold increased emission rate, and continuous wave PL results showed a twofold enhanced intensity. In addition, LiF film/Ag cluster/LiF film structure resolved the carrier injection problem between the cathode and the organic layer. Thus, the suggested design may follow plasmonic applications for a wider organic optoelectronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/94/17/1.3125249.html;jsessionid=3bphte9kmljlj.x-aip-live-01?itemId=/content/aip/journal/apl/94/17/10.1063/1.3125249&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/17/10.1063/1.3125249
10.1063/1.3125249
SEARCH_EXPAND_ITEM