1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Interfacial electronic structures of molecules on a K-doped CuPc surface
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/94/20/10.1063/1.3136863
1.
1.P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001).
http://dx.doi.org/10.1063/1.1384001
2.
2.J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 84, 3013 (2004).
http://dx.doi.org/10.1063/1.1713036
3.
3.M. G. Mason, C. W. Tang, L. S. Hung, P. Raychaudhuri, J. Madathil, D. J. Giesen, L. Yan, Q. T. Lee, Y. Gao, S. T. Lee, L. S. Liao, L. F. Cheng, W. R. Salaneck, D. A. dos Santos, and J. L. Bredas, J. Appl. Phys. 89, 2756 (2001).
http://dx.doi.org/10.1063/1.1324681
4.
4.O. V. Molodtsova, V. M. Zhilin, D. V. Vyalikh, V. Y. Aristov, and M. Knupfer, J. Appl. Phys. 98, 093702 (2005).
http://dx.doi.org/10.1063/1.2121936
5.
5.O. V. Molodtsova, M. Knupfer, V. Y. Aristov, D. V. Vyalikh, V. M. Zhilin, and Y. A. Ossipyan, J. Appl. Phys. 103, 053711 (2008).
http://dx.doi.org/10.1063/1.2874001
6.
6.H. Ding and Y. Gao, Appl. Surf. Sci. 252, 3943 (2006).
http://dx.doi.org/10.1016/j.apsusc.2005.09.071
7.
7.J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985).
http://dx.doi.org/10.1016/0092-640X(85)90016-6
8.
8.C. -P. Cheng, T. -W. Pi, C. -P. Ouyang, and J. -F. Wen, J. Vac. Sci. Technol. B 23, 1018 (2005).
http://dx.doi.org/10.1116/1.1924608
9.
9.J. H. Weaver, J. L. Martins, T. Komeda, Y. Chen, T. R. Ohno, G. H. Kroll, N. Troullier, R. E. Haufler, and R. E. Smalley, Phys. Rev. Lett. 66, 1741 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.1741
10.
10.N. Papageorgiou, Y. Ferro, E. Salomon, A. Allouche, J. M. Layet, L. Giovanelli, and G. Le Lay, Phys. Rev. B 68, 235105 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.235105
11.
11.A. Thompson, D. Attwood, E. Gullikson, M. Howells, K. -J. Kim, J. Kirz, J. Kortright, I. Lindau, P. Pianetta, A. Robinson, J. H. Scofield, J. Huderwood, D. Vaughan, G. Williams, and H. Winick, X-Ray Data Booklet (University of California, Berkeley, CA, 2001).
12.
12.T. R. Ohno, Y. Chen, S. E. Harvey, G. H. Kroll, J. H. Weaver, R. E. Haufler, and R. E. Smalley, Phys. Rev. B 44, 13747 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.13747
13.
13.J. E. Rowe, P. Rudolf, L. H. Tjeng, R. A. Malic, G. Meigs, C. T. Cheng, J. Chen, and E. W. Plummer, Int. J. Mod. Phys. B 6, 3909 (1992).
http://dx.doi.org/10.1142/S0217979292001997
14.
14.M. Knupfer, Surf. Sci. Rep. 42, 1 (2001).
http://dx.doi.org/10.1016/S0167-5729(00)00012-1
15.
15.O. V. Molodtsova and M. Knupfer, J. Appl. Phys. 99, 053704 (2006).
http://dx.doi.org/10.1063/1.2175468
16.
16.C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).
http://dx.doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
17.
17.H. Peisert, M. Knupfer, T. Schwieger, G. G. Fuentes, D. Olligs, J. Fink, and T. Schmidt, J. Appl. Phys. 93, 9683 (2003).
http://dx.doi.org/10.1063/1.1577223
18.
18.R. W. Lof, M. A. van Veenendaal, B. Koopmans, H. T. Jonkman, and G. A. Sawatzky, Phys. Rev. Lett. 68, 3924 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.3924
19.
19.I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, Jr., Chem. Phys. Lett. 327, 181 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00882-4
20.
20.P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
21.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/20/10.1063/1.3136863
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Valence-band spectra recorded at a photon energy of 35 eV for adsorption on . Each curve is denoted with the thickness, in units of monolayers (ML), as well as with the low-energy cutoff shift, in eV.

Image of FIG. 2.

Click to view

FIG. 2.

Evolution of N and C core-level spectra. The inset of the left panel is the variation of the relative intensity for K and N core-level spectra as a function of the coverage. The curve fitting results of C cores are shown in the inset of the right panel.

Image of FIG. 3.

Click to view

FIG. 3.

Evolution of energy levels for the heterointerface. (a) Coverage dependence of the energy, relative to the Fermi level, for the vacuum level, HOMO-CuPc and -, and gap state-CuPc and -. (b) The interfacial energy diagram for the 3.2 ML heterojunction.

Loading

Article metrics loading...

/content/aip/journal/apl/94/20/10.1063/1.3136863
2009-05-21
2014-04-17

Abstract

The evolution of interfacial electronic structures of on a K-doped CuPc surface is studied via synchrotron-radiation photoemission spectroscopy. Layer-by-layer growth has been identified. As the heterointerface formed, the K diffuses into the overlayer, and transfers negative charge into the lowest unoccupied molecular orbital (LUMO) of , resulting in a significant interfacial dipole potential. With K doping, increased photon absorption, due to the existence of gap states, and an enhanced energy-level difference between the LUMO of and the highest occupied molecular orbital of CuPc could possibly improve the efficiency of organic photovoltaicdevices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/94/20/1.3136863.html;jsessionid=1s252g3erinfq.x-aip-live-06?itemId=/content/aip/journal/apl/94/20/10.1063/1.3136863&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Interfacial electronic structures of C60 molecules on a K-doped CuPc surface
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/20/10.1063/1.3136863
10.1063/1.3136863
SEARCH_EXPAND_ITEM