1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Carbon nanotube and conducting polymer dual-layered films fabricated by microcontact printing
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/94/22/10.1063/1.3137185
1.
1.R. H. Schmidt, I. A. Kinloch, A. N. Burgess, and A. H. Windle, Langmuir 23, 5707 (2007).
http://dx.doi.org/10.1021/la062794m
2.
2.V. Bocharova, A. Kiriy, U. Oertel, M. Stamm, F. Stoffelbach, R. Jerome, and C. Detrembleur, J. Phys. Chem. B 110, 14640 (2006).
http://dx.doi.org/10.1021/jp062458e
3.
3.F. Gubbels, S. Blacher, E. Vanlathem, R. Jerome, R. Deltour, F. Brouers, and Ph. Teyssie, Macromolecules 28, 1559 (1995).
http://dx.doi.org/10.1021/ma00109a030
4.
4.F. Gubbels, R. Jerome, E. Vanlathem, R. Deltour, S. Blacher, and F. Brouers, Chem. Mater. 10, 1227 (1998).
http://dx.doi.org/10.1021/cm970594d
5.
5.M. A. Meitl, Y. Zhou, A. Gaur, S. W. Jeon, M. L. Usrey, M. S. Strano, and J. A. Rogers, Nano Lett. 4, 1643 (2004).
http://dx.doi.org/10.1021/nl0491935
6.
6.V. V. Tsukruk, H. Ko, and S. Peleshanko, Phys. Rev. Lett. 92, 065502 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.065502
7.
7.S. G. Rao, L. Huang, W. Setyawan, and S. Hong, Nature (London) 425, 36 (2003).
http://dx.doi.org/10.1038/425036a
8.
8.J. W. Huh, Y. M. Kim, Y. W. Park, J. H. Choi, J. W. Lee, J. W. Lee, J. W. Yang, S. H. Ju, K. K. Paek, and B. K. Ju, J. Appl. Phys. 103, 044502 (2008).
http://dx.doi.org/10.1063/1.2840053
9.
9.A. Kumar and G. M. Whitesides, Appl. Phys. Lett. 63, 2002 (1993).
http://dx.doi.org/10.1063/1.110628
10.
10.Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. -C. Chung, and H. G. Yoon, Carbon 43, 23 (2005).
http://dx.doi.org/10.1016/j.carbon.2004.08.015
11.
11.J. M. Benoit, B. Corraze, S. Lefrant, W. J. Blau, P. Bernier, and O. Chauvet, Synth. Met. 121, 1215 (2001).
http://dx.doi.org/10.1016/S0379-6779(00)00838-9
12.
12.B. J. Landi, R. P. Raffaelle, M. J. Heben, J. L. Alleman, W. V. Derveer, and T. Gennett, Nano Lett. 2, 1329 (2002).
http://dx.doi.org/10.1021/nl025800h
13.
13.L. J. van der Pauw, Philips Research Reports 13, 1 (1958).
14.
14.M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schütz, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Nature (London) 431, 963 (2004).
http://dx.doi.org/10.1038/nature02987
15.
15.Q. Cao, Z. -T. Zhu, M. G. Lemaitre, M. -G. Xia, M. Shim, and J. A. Rogers, Appl. Phys. Lett. 88, 113511 (2006).
http://dx.doi.org/10.1063/1.2181190
16.
16.M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, Appl. Phys. Lett. 81, 268 (2002).
http://dx.doi.org/10.1063/1.1491009
17.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/22/10.1063/1.3137185
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic depicting process of CPDF electrodes patterning for OTFT using MCP. (b) The structure of OTFT implemented with CPDF electrodes, which are introduced to a doped Si substrate, with a 300 nm thermally grown oxide layer used as the bottom gate. A 70 nm thick active layer of pentacene is evaporated on the defined source and drain electrodes at a rate of around 0.3 Å/s.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Surface resistivity of CPDF as a function of CNT concentration (0, 0.0001, 0.001, 0.003, 0.005, 0.01, 0.05, and 0.1 wt %) and SEM images of CPDF at the CNT concentrations of (i) 0.005, (ii) 0.01, and (iii) 0.1 wt %. [Inset: conduction electron mobility of the CPDF obtained by a Hall effect measurement system (Ecopia, HMS-1000) over the area of .] (b) Transmittance of the CPDF with thickness of 1000 Å at 0.005 wt % CNT concentration. (Inset: a photograph of CPDF on glass located above the institutional logo).

Image of FIG. 3.

Click to view

FIG. 3.

(a) AFM image of OTS-SAM pattern on substrate. (Inset: contact angle after the OTS-SAM treatment). (b) Microimage of the pattern of CPDF for source and drain electrodes.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Output curve and (b) transfer curve of a pentacene OTFT having CPDF source and drain electrodes. The output and transfer curves are obtained by a semiconductor characterization system (Keithley SCS 4200) in a dark box. [Inset (b): AFM image of morphology of the pentacene in channel.]

Loading

Article metrics loading...

/content/aip/journal/apl/94/22/10.1063/1.3137185
2009-06-05
2014-04-23

Abstract

We report carbon nanotube/conducting polymer dual-layered film (CPDF) electrodes fabricated by microcontact printing for flexible transparent electrodes of organic thin film transistors (OTFTs). The CPDFs show surfaceresistivity and transmittance at an extremely low loading of single-walled carbon nanotubes, and can be self-aligned with a precision of . The CPDFs are applied as the source and drain electrodes in OTFTs without any supplementary alignment process, which leads to a mobility and a current on/off ratio of approximately and , respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/94/22/1.3137185.html;jsessionid=21icmnuodrhu1.x-aip-live-02?itemId=/content/aip/journal/apl/94/22/10.1063/1.3137185&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Carbon nanotube and conducting polymer dual-layered films fabricated by microcontact printing
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/22/10.1063/1.3137185
10.1063/1.3137185
SEARCH_EXPAND_ITEM