1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Substrate-dependent interface composition and charge transport in films for organic photovoltaics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/94/23/10.1063/1.3149706
1.
1.A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, Mater. Today 10, 28 (2007).
http://dx.doi.org/10.1016/S1369-7021(07)70276-6
2.
2.M. Jorgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.005
3.
3.M. Koppe, M. Scharber, C. Brabec, W. Duffy, M. Heeney, and I. McCulloch, Adv. Funct. Mater. 17, 1371 (2007).
http://dx.doi.org/10.1002/adfm.200600859
4.
4.C. Yang, J. Y. Kim, S. Cho, J. K. Lee, A. J. Heeger, and F. Wudl, J. Am. Chem. Soc. 130, 6444 (2008).
http://dx.doi.org/10.1021/ja710621j
5.
5.H. Hoppe and N. S. Sariciftci, J. Mater. Chem. 16, 45 (2006).
http://dx.doi.org/10.1039/b510618b
6.
6.J. Stöhr, NEXAFS Spectroscopy (Springer, Berlin, 1992).
7.
7.R. J. Kline, D. M. DeLongchamp, D. A. Fischer, E. K. Lin, M. Heeney, I. McCulloch, and M. F. Toney, Appl. Phys. Lett. 90, 062117 (2007).
http://dx.doi.org/10.1063/1.2472533
8.
8.G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, Adv. Funct. Mater. 17, 1636 (2007).
http://dx.doi.org/10.1002/adfm.200600624
9.
9.Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best one available for this purpose.
10.
10.D. H. K. Pan and W. M. Prest, J. Appl. Phys. 58, 2861 (1985).
http://dx.doi.org/10.1063/1.335858
11.
11.R. D. Peters, X. M. Yang, T. K. Kim, B. H. Sohn, and P. F. Nealey, Langmuir 16, 4625 (2000).
http://dx.doi.org/10.1021/la991500c
12.
12.X. J. Wang, T. Ederth, and O. Inganas, Langmuir 22, 9287 (2006).
http://dx.doi.org/10.1021/la061606p
13.
13.M. L. Chabinyc, A. Salleo, Y. L. Wu, P. Liu, B. S. Ong, M. Heeney, and I. McCulloch, J. Am. Chem. Soc. 126, 13928 (2004).
http://dx.doi.org/10.1021/ja044884o
14.
14.D. M. DeLongchamp, R. J. Kline, E. K. Lin, D. A. Fischer, L. J. Richter, L. A. Lucas, M. Heeney, I. McCulloch, and J. E. Northrup, Adv. Mater. (Weinheim, Ger.) 19, 833 (2007).
http://dx.doi.org/10.1002/adma.200602651
15.
15.G. Horowitz, J. Mater. Res. 19, 1946 (2004).
http://dx.doi.org/10.1557/JMR.2004.0266
16.
16.D. M. DeLongchamp, B. M. Vogel, Y. Jung, M. C. Gurau, C. A. Richter, O. A. Kirillov, J. Obrzut, D. A. Fischer, S. Sambasivan, L. J. Richter, and E. K. Lin, Chem. Mater. 17, 5610 (2005).
http://dx.doi.org/10.1021/cm0513637
17.
17.L. Y. Park, A. M. Munro, and D. S. Ginger, J. Am. Chem. Soc. 130, 15916 (2008).
http://dx.doi.org/10.1021/ja804088j
18.
18.S. K. Hau, H. -L. Yip, O. Acton, N. S. Baek, H. Ma, and A. K.-Y. Jen, J. Mater. Chem. 18, 5113 (2008).
http://dx.doi.org/10.1039/b808004f
19.
19.M. Morana, P. Koers, C. Waldauf, M. Koppe, D. Muehlbacher, P. Denk, M. Scharber, D. Waller, and C. Brabec, Adv. Funct. Mater. 17, 3274 (2007).
http://dx.doi.org/10.1002/adfm.200700124
20.
20.H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature (London) 401, 685 (1999).
http://dx.doi.org/10.1038/44359
21.
21.W. Takashima, T. Murasaki, S. Nagamatsu, T. Morita, and K. Kaneto, Appl. Phys. Lett. 91, 071905 (2007).
http://dx.doi.org/10.1063/1.2770963
22.
22.E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, J. Kadam, and T. M. Klapwijk, Nature Mater. 2, 678 (2003).
http://dx.doi.org/10.1038/nmat978
23.
23.L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, Nature (London) 434, 194 (2005).
http://dx.doi.org/10.1038/nature03376
24.
24.T. D. Anthopoulos, D. M. de Leeuw, E. Cantatore, S. Setayesh, E. J. Meijer, C. Tanase, J. C. Hummelen, and P. W. M. Blom, Appl. Phys. Lett. 85, 4205 (2004).
http://dx.doi.org/10.1063/1.1812577
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/23/10.1063/1.3149706
Loading
/content/aip/journal/apl/94/23/10.1063/1.3149706
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/94/23/10.1063/1.3149706
2009-06-09
2014-11-26

Abstract

The buried interface composition of polymer-fullerene blends is found by near-edge x-ray absorption fine structure spectroscopy to depend on the surface energy of the substrate upon which they are cast. The interface composition determines the type of charge transport measured with thin film transistors. These results have implications for organic photovoltaics device design and the use of transistors to evaluate bulk mobility in blends.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/94/23/1.3149706.html;jsessionid=bjdf2nab4njom.x-aip-live-02?itemId=/content/aip/journal/apl/94/23/10.1063/1.3149706&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Substrate-dependent interface composition and charge transport in films for organic photovoltaics
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/23/10.1063/1.3149706
10.1063/1.3149706
SEARCH_EXPAND_ITEM