1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Ultrafast all-optical light modulation in the near infrared region by phase sensitive polymer guided wave mode geometry containing porphyrin tapes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/94/25/10.1063/1.3159620
1.
1.Y. M. Liu, X. Xiao, P. R. Prucnal, and J. C. Sturm, Appl. Opt. 33, 3871 (1994).
http://dx.doi.org/10.1364/AO.33.003871
2.
2.K. Nakamura, Y. Kurosawa, and K. Ishikawa, Appl. Phys. Lett. 68, 2799 (1996).
http://dx.doi.org/10.1063/1.116611
3.
3.M. Furuki, I. Iwasa, S. Tatsuura, Y. Sato, M. Tian, T. Matsubara, H. Mitsu, M. Naruse, and F. Kubota, IEICE Trans. Electron. E87-C, 1161 (2004).
4.
4.T. Nagamura, K. Sasaki, F. Iizuka, T. Adachi, and I. Yoshida, Opt. Commun. 205, 107 (2002).
http://dx.doi.org/10.1016/S0030-4018(02)01312-3
5.
5.R. Matsumoto and T. Nagamura, J. Appl. Phys. 100, 113102 (2006).
http://dx.doi.org/10.1063/1.2397291
6.
6.R. Matsumoto, T. Inoue, and T. Nagamura, Appl. Phys. Lett. 91, 251104 (2007).
http://dx.doi.org/10.1063/1.2825566
7.
7.G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, J. Appl. Phys. 101, 073105 (2007).
http://dx.doi.org/10.1063/1.2714768
8.
8.H. Nakamura, K. Kanamoto, Y. Nakamura, S. Ohkouchi, H. Ishikawa, and K. Asakawa, J. Appl. Phys. 96, 1425 (2004).
http://dx.doi.org/10.1063/1.1767616
9.
9.S. G. Nelson, K. S. Sohnston, and S. S. Yee, Sens. Actuators B 35, 187 (1996).
http://dx.doi.org/10.1016/S0925-4005(97)80052-4
10.
10.I. R. Hooper and J. R. Sambles, J. Appl. Phys. 96, 3004 (2004).
http://dx.doi.org/10.1063/1.1778218
11.
11.F. Schreier, M. Schmitz, and O. Bryngdahl, Opt. Lett. 23, 576 (1998).
http://dx.doi.org/10.1364/OL.23.000576
12.
12.X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Lin, Phys. Rev. E 73, 056617 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.056617
13.
13.A. Tsuda, H. Furuta, and A. Osuka, Angew. Chem., Int. Ed. 39, 2549 (2000).
http://dx.doi.org/10.1002/1521-3773(20000717)39:14<2549::AID-ANIE2549>3.0.CO;2-A
14.
14.A. Tsuda and A. Osuka, Science 293, 79 (2001).
http://dx.doi.org/10.1126/science.1059552
15.
15.A. Tsuda, H. Furuta, and A. Osuka, J. Am. Chem. Soc. 123, 10304 (2001).
http://dx.doi.org/10.1021/ja0110933
16.
16.N. Aratani and A. Osuka, Chem. Rec. 3, 225 (2003).
http://dx.doi.org/10.1002/tcr.10062
17.
17.H. S. Cho, D. H. Jeong, S. Cho, D. Kim, Y. Matsuzaki, K. Tanaka, A. Tsuda, and A. Osuka, J. Am. Chem. Soc. 124, 14642 (2002).
http://dx.doi.org/10.1021/ja020826w
18.
18.T. Mori and D. E. Aspnes, Thin Solid Films 455, 33 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.12.037
19.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/25/10.1063/1.3159620
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic representation of a phase sensitive GWM geometry and the structure of copper porphyrin tape tetramer, CuT4.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Absorption and transient absorption spectra upon excitation femtosecond laser at 800 nm for CuT4/ARTON® film (2.0 wt %). (b) Spectra of observed extinction coefficient change , and of by Kramers–Kronig transformation from .

Image of FIG. 3.

Click to view

FIG. 3.

(a) The calculated output intensity plotted against and wavelength for the model consisted of Cytop® film (400 nm) and the waveguide layer (600 nm) with . The refractive indices of BK7, Cytop®, and the waveguide layer are as follows; , and , respectively. The output intensity increases from 0 (dark) to 1 (white). (b) Calculated output intensity as a function of at various from (a) 30° to (e) 60°.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Output intensity changes just after femtosecond laser excitation for phase sensitive GWM geometry consisted of an ARTON® film (600 nm) containing CuT4 (2 wt %) on a Cytop® film (400 nm) at three azimuthal angles of the analyzer; 30°, 45°, and 60° from the top. (b) The solid and broken lines show reflectance for the previous GWM method without phase detection and transmittance for the 100 times thicker film as a function of , respectively.

Loading

Article metrics loading...

/content/aip/journal/apl/94/25/10.1063/1.3159620
2009-06-22
2014-04-24

Abstract

A phase sensitive detection was introduced into reflection type all-optical light modulation based on guided wave mode (GWM) geometry. A polymer film containing a copperporphyrin tape and a low refractive polymer film formed GWM at specific incident angle and wavelength. Sensitive changes of output intensity were observed upon femtosecond laser excitation depending on azimuthal angles of the analyzer, which was caused by phase changes at the GWM by alone. The present system has a great advantage as compared with the conventional GWM or simple transmission methods for all-optical light modulation especially for materials showing the ground state absorption.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/94/25/1.3159620.html;jsessionid=59p0p698tp36u.x-aip-live-02?itemId=/content/aip/journal/apl/94/25/10.1063/1.3159620&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ultrafast all-optical light modulation in the near infrared region by phase sensitive polymer guided wave mode geometry containing porphyrin tapes
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/25/10.1063/1.3159620
10.1063/1.3159620
SEARCH_EXPAND_ITEM