1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
All-organic solution-processed two-terminal transistors fabricated using the photoinduced -channels
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/94/4/10.1063/1.3062852
1.
1.R. A. Street, W. S. Wong, S. E. Ready, I. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, Mater. Today 9, 32 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71495-X
2.
2.S. R. Forrest, Nature (London) 428, 911 (2004).
http://dx.doi.org/10.1038/nature02498
3.
3.G. Horowitz, Adv. Mater. (Weinheim, Ger.) 10, 365 (1998).
http://dx.doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.3.CO;2-L
4.
4.F. Cicoira and C. Santato, Adv. Funct. Mater. 17, 3421 (2007).
http://dx.doi.org/10.1002/adfm.200700174
5.
5.H. Meng, F. Sun, M. B. Goldfinger, F. Gao, D. J. Londono, W. J. Marshal, G. S. Blackman, K. D. Dobbs, and D. E. Keys, J. Am. Chem. Soc. 128, 9304 (2006).
6.
6.I. Mcculloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. Mcgehee, and M. F. Toney, Nature Mater. 5, 328 (2006).
http://dx.doi.org/10.1038/nmat1612
7.
7.H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwid, and D. M. de Leeuw, Nature (London) 401, 685 (1999).
http://dx.doi.org/10.1038/44359
8.
8.J. M. Lupton, R. Koeppe, J. G. Müller, J. Feldmann, U. Scherf, and U. Lemmer, Adv. Mater. (Weinheim, Ger.) 15, 1471 (2003).
http://dx.doi.org/10.1002/adma.200301644
9.
9.P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
10.
10.Y. Y. Noh, D. Y. Kim, Y. Yoshida, K. Yase, B. J. Jung, E. Lim, and H. K. Shim, Appl. Phys. Lett. 86, 043501 (2005).
http://dx.doi.org/10.1063/1.1856144
11.
11.Q. Tang, L. Li, Y. Song, Y. Liu, H. Li, W. Xu, Y. Liu, W. Hu, and D. Zhu, Adv. Mater. (Weinheim, Ger.) 19, 2624 (2007).
http://dx.doi.org/10.1002/adma.200700208
12.
12.M. Mas-Torrent, P. Hadley, N. Crivillers, J. Veciana, and C. Rovira, ChemPhysChem 7, 86 (2006).
http://dx.doi.org/10.1002/cphc.200500325
13.
13.J. W. Park, D. S. Chung, J. -H. Park, J. -K. Park, G. H. Kim, H. -S. Lee, Y. -H. Kim, H. -K. Shim, C. E. Park, and S. -K. Kwon (unpublished).
14.
14.M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford, New York, 1999).
15.
15.W. Helfrich, Phys. Status Solidi 7, 863 (1964).
http://dx.doi.org/10.1002/pssb.19640070314
16.
16.P. Jansen, W. Helfrich, and N. Riehl, Phys. Status Solidi 7, 851 (1964).
http://dx.doi.org/10.1002/pssb.19640070313
17.
17.W. Helfrich and P. Mark, Z. Phys. 171, 527 (1963).
http://dx.doi.org/10.1007/BF01377874
18.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/4/10.1063/1.3062852
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Molecular structure of TIPSAntNa, used as the active layer. (b) XRD analysis of TIPSAntNa single crystals depending on the crystallographic axis (inset: schematic of the analysis result). (c) Crystal-thickness dependence of the photocurrent (light irradiation: , crystal width: ). Inset: crystal-width dependence of the photocurrent (light irradiation: , crystal thickness: ). (d) OM image of the two-terminal all-organic transistors.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Two-terminal-photodiode characteristics measured with a single crystal exhibiting a thickness of . (b) Three-terminal-phototransistor characteristics measured with a single crystal exhibiting a thickness of . In both cases, the light luminescence was .

Image of FIG. 3.

Click to view

FIG. 3.

(a) Pseudo-output characteristics and (b) transfer characteristics obtained from photogated two-terminal transistors.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Current-intensity characteristics to obtain [Eq. (2)]. (b) Direct comparison between [Eq. (2)] and [Eq. (3)].

Loading

Article metrics loading...

/content/aip/journal/apl/94/4/10.1063/1.3062852
2009-01-27
2014-04-25

Abstract

All-organic solution-processed two-terminal transistors were fabricated by replacing the “field-induced -channel” of an organic field-effect transistor with a “photoinduced -channel.” A simple device structure—containing solution-processed 2,6-di(naphthalene-2-yl)-9,10-bis(triisopropylsilylethynyl)anthracene single crystals as the active layer (on a plastic substrate) and poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) as source and drain electrodes—enabled high-performance photosensor (and even transistor) behavior, showing pseudo-output and transfer curves with an on/off ratio of . We explain this photogenerated -channel effect using Helfrich’s theory, which describes the photodetrapping behavior of a space-charge-limited current under illumination.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/94/4/1.3062852.html;jsessionid=38tfb8dnx8s87.x-aip-live-03?itemId=/content/aip/journal/apl/94/4/10.1063/1.3062852&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: All-organic solution-processed two-terminal transistors fabricated using the photoinduced p-channels
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/4/10.1063/1.3062852
10.1063/1.3062852
SEARCH_EXPAND_ITEM