1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Organic photodetector arrays with indium tin oxide electrodes patterned using directly transferred metal masks
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/94/4/10.1063/1.3072612
1.
1.C. Kim, P. E. Burrows, and S. R. Forrest, Science 288, 831 (2000).
http://dx.doi.org/10.1126/science.288.5467.831
2.
2.H. O. Jacobs and G. M. Whitesides, Science 291, 1763 (2001).
http://dx.doi.org/10.1126/science.1057061
3.
3.Y. Xia and G. M. Whitesides, Angew. Chem., Int. Ed. 37, 550 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.3.CO;2-7
4.
4.S. M. Miller, S. M. Troian, and S. Wagner, J. Vac. Sci. Technol. B 20, 2320 (2002).
http://dx.doi.org/10.1116/1.1520554
5.
5.C. Kim, M. Shtein, and S. R. Forrest, Appl. Phys. Lett. 80, 4051 (2002).
http://dx.doi.org/10.1063/1.1481980
6.
6.C. Kim and S. R. Forrest, Adv. Mater. (Weinheim, Ger.) 15, 541 (2003).
http://dx.doi.org/10.1002/adma.200390127
7.
7.X. Xu, X. F. Qi, M. Davanco, and S. R. Forrest, 2007 IEEE LEOS Annual Meeting Conference Proceedings, 2007 (unpublished), Vol. 1, p. 578.
8.
8.X. Xu, M. Davanco, X. Qi, and S. R. Forrest, Org. Electron. 9, 1122 (2008).
9.
9.T. L. Breen, P. M. Fryer, R. W. Nunes, and M. E. Rothwell, Langmuir 2002, 18 (2001).
10.
10.T. H. Tsai and Y. F. Wu, Microelectron. Eng. 83, 536 (2006).
http://dx.doi.org/10.1016/j.mee.2005.12.003
11.
11.N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, Nature (London) 393, 146 (1998).
http://dx.doi.org/10.1038/30193
12.
12.P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001).
http://dx.doi.org/10.1063/1.1384001
13.
13.P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
14.
14.J. Xue and S. R. Forrest, J. Appl. Phys. 95, 1859 (2004).
http://dx.doi.org/10.1063/1.1640453
15.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/4/10.1063/1.3072612
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Process flow of the patterning of ITO on PETg substrates. The substrate is initially coated with a layer of ITO and thin Au strike layer on its surface. A PDMS stamp coated with the Au pattern to be transferred is placed in contact with the PETg substrate, forming a metallic bond between the two Au surfaces. When the PDMS stamp is parted from the PETg substrate, the patterned metal etch mask layer is additively transferred. Next, the thin Au strike layer is removed in an argon plasma, leading to the exposure of the ITO surface between the Au stripes. The exposed ITO layer is then removed by wet etching. After the removal of the Au masks, the patterned ITO stripes remain.

Image of FIG. 2.

Click to view

FIG. 2.

(a) AFM image of Au surfaces on PETg substrates before, and (b) after Argon plasma etching. (c) SEM image of the wide Au mask patterned on a flat PETg/ITO/Au surface. (d) SEM image of the patterned wide ITO stripes after the wet etch process. The lines in (c) and (d) are features directly on the flexible PETg plastic substrates. (e) Photograph of wide ITO stripes patterned onto a 1 cm radius PETg hemisphere. (f) Microscope image of a 100 pixel organic photodetector hemispherical FPA. Inset: Photograph of the 100 pixel hemispherical FPA.

Image of FIG. 3.

Click to view

FIG. 3.

Reverse biased current density–voltage characteristics for an individual organic photodetector in a 10 kilopixel planar array, an individual organic photodetector in a 100 pixel hemispherical FPA, and a control device fabricated by shadow mask patterning. Inset: External quantum efficiency (EQE) of the double heterojunction photodiode consisting of a 50 nm thick CuPc layer, a 50 nm thick layer, and a 10 nm thick BCP blocking layer on patterned ITO transparent anodes.

Loading

Article metrics loading...

/content/aip/journal/apl/94/4/10.1063/1.3072612
2009-01-29
2014-04-25

Abstract

We demonstrate the patterning of indium tin oxide (ITO) electrodes with submicron resolution onto both planar and hemispherical plastic surfaces using a process based on the direct transfer of a metalfilmetch mask via cold welding. Using this process, we fabricate an organic (copper phthalocyanine/) photodetector focal plane array on a hemispherical surface in an architecture that mimics the size and form of the human eye. The low absorption of the ITO anodes results in an increase in external quantum efficiency by up to 65% in the visible as compared with that of a previously demonstrated photodetector array with semitransparent Auanodes. The maximum photodetector detectivity is .

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/94/4/1.3072612.html;jsessionid=1f6lki0avzqbi.x-aip-live-02?itemId=/content/aip/journal/apl/94/4/10.1063/1.3072612&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Organic photodetector arrays with indium tin oxide electrodes patterned using directly transferred metal masks
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/4/10.1063/1.3072612
10.1063/1.3072612
SEARCH_EXPAND_ITEM