1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/94/6/10.1063/1.3080203
1.
1.W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
http://dx.doi.org/10.1002/adfm.200500211
2.
2.G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
3.
3.W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science 295, 2425 (2002).
http://dx.doi.org/10.1126/science.1069156
4.
4.C. H. Chang, T. K. Huang, Y. T. Lin, Y. Y. Lin, C. W. Chen, T. H. Chu, and W. F. Su, J. Mater. Chem. 18, 2201 (2008).
http://dx.doi.org/10.1039/b800071a
5.
5.Y. Y. Lin, T. H. Chu, C. W. Chen, and W. F. Su, Appl. Phys. Lett. 92, 053312 (2008).
http://dx.doi.org/10.1063/1.2839405
6.
6.W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, Adv. Mater. (Weinheim, Ger.) 16, 1009 (2004).
http://dx.doi.org/10.1002/adma.200306659
7.
7.K. M. Coakley and M. D. McGehee, Appl. Phys. Lett. 83, 3380 (2003).
http://dx.doi.org/10.1063/1.1616197
8.
8.P. Ravirajan, S. A. Haque, J. R. Durrant, D. D. C. Bradley, and J. Nelson, Adv. Funct. Mater. 15, 609 (2005).
http://dx.doi.org/10.1002/adfm.200400165
9.
9.Q. Wei, K. Hirota, K. Tajima, and K. Hashimoto, Chem. Mater. 18, 5080 (2006).
http://dx.doi.org/10.1021/cm061697b
10.
10.P. Ravirajan, A. M. Peiró, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. Nelson, J. Phys. Chem. B 110, 7635 (2006).
http://dx.doi.org/10.1021/jp0571372
11.
11.D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, and D. S. Ginley, Thin Solid Films 496, 26 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.08.179
12.
12.Y. Y. Lin, C. W. Chen, T. H. Chu, W. F. Su, C. C. Lin, C. H. Ku, J. J. Wu, and C. H. Chen, J. Mater. Chem. 17, 4571 (2007).
http://dx.doi.org/10.1039/b710400f
13.
13.K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, Sol. Energy Mater. Sol. Cells 64, 115 (2000).
http://dx.doi.org/10.1016/S0927-0248(00)00065-9
14.
14.M. Grätzel, Chem. Lett. 34, 8 (2005).
http://dx.doi.org/10.1246/cl.2005.8
15.
15.R. H. Friend, G. J. Denton, J. J. M. Halls, N. T. Harrison, A. B. Holmes, A. Köhler, A. Lux, S. C. Moratti, K. Pichler, N. Tessler, K. Towns, and H. F. Wittmann, Solid State Commun. 102, 249 (1997).
http://dx.doi.org/10.1016/S0038-1098(96)00715-6
16.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/6/10.1063/1.3080203
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) The SEM image and of the bright field TEM image (inset) of ZnO nanorod array. The scale bars for SEM and TEM images are 100 and 50 nm, respectively. (c) The schematic structure of the nanostructured ZnO/P3HT hybrid photovoltaic device. (b) UV-visible absorption spectra of the pristine mercurochrome (Mer), the ZnO nanorod array modified with mercurochrome and ZnO/mercurochrome/P3HT hybrid thin films.

Image of FIG. 2.

Click to view

FIG. 2.

Current-voltage characteristics of the devices based on ZnO/P3HT and nanorod hybrids before and after interface modification.

Image of FIG. 3.

Click to view

FIG. 3.

The TRPL decay curves of ZnO/P3HT and hybrids before and after interface modification. The inset shows the corresponding energy levels of ZnO, mercurochrome and P3HT.

Image of FIG. 4.

Click to view

FIG. 4.

The photovoltage decay curves of devices based on nanorods hybrid before and after interface modification.

Tables

Generic image for table

Click to view

Table I.

Device performance of ZnO/P3HT and nanorod hybrid photovoltaic devices before and after interface modification.

Loading

Article metrics loading...

/content/aip/journal/apl/94/6/10.1063/1.3080203
2009-02-13
2014-04-23

Abstract

We have demonstrated an improvement of photovoltaic performance based on the nanostructured ZnO/poly(3-hexylthiophene) (P3HT) hybrid through interface molecular modification on ZnOnanorodsurface. By probing the carrier dynamics at ZnO/P3HT interfaces, we have found that the interfacial molecules can play the role of assisting charge separation and suppression of back recombination at interfaces, which accounts for the observed enhanced short circuit current and open circuit voltage in photovoltaic performance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/94/6/1.3080203.html;jsessionid=17lx2vgl1g901.x-aip-live-01?itemId=/content/aip/journal/apl/94/6/10.1063/1.3080203&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/94/6/10.1063/1.3080203
10.1063/1.3080203
SEARCH_EXPAND_ITEM