1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Regioregular poly(3-hexyl-thiophene) helical self-organization on carbon nanotubes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/1/10.1063/1.3173825
1.
1.T. Durkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, Nano Lett. 4, 35 (2004).
http://dx.doi.org/10.1021/nl034841q
2.
2.J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature (London) 391, 59 (1998).
http://dx.doi.org/10.1038/34139
3.
3.M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Phys. Rev. Lett. 84, 5552 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5552
4.
4.S. Iijima, Nature (London) 354, 56 (1991).
http://dx.doi.org/10.1038/354056a0
5.
5.T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. -L. Cheung, and C. M. Lieber, Science 289, 94 (2000).
http://dx.doi.org/10.1126/science.289.5476.94
6.
6.S. Chopra, K. Mcguire, N. Gothard, A. M. Rao, and A. Pham, Appl. Phys. Lett. 83, 2280 (2003).
http://dx.doi.org/10.1063/1.1610251
7.
7.C. Piliego, M. Mazzeo, M. Salerno, R. Cingolani, G. Gigli, and A. Moro, Appl. Phys. Lett. 89, 103514 (2006).
http://dx.doi.org/10.1063/1.2347698
8.
8.D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, Appl. Phys. Lett. 70, 3335 (1997).
http://dx.doi.org/10.1063/1.119162
9.
9.D. T. Mcquade, A. E. Pullen, and T. M. Swager, Chem. Rev. 100, 2537 (2000).
http://dx.doi.org/10.1021/cr9801014
10.
10.E. Kymakis and G. A. J. Amaratunga, Appl. Phys. Lett. 80, 112 (2002).
http://dx.doi.org/10.1063/1.1428416
11.
11.B. Pradhan, K. Setyowati, H. Liu, D. H. Waldeck, and J. Chen, Nano Lett. 8, 1142 (2008).
http://dx.doi.org/10.1021/nl0732880
12.
12.M. -C. Wu, Y. -Y. Lin, S. Chen, H. -C. Liao, Y. -J. Wu, C. -W. Chen, Y. -F. Chen, and W. -F. Su, Chem. Phys. Lett. 468, 64 (2009).
http://dx.doi.org/10.1016/j.cplett.2008.11.080
13.
13.J. N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K. P. Ryan, C. Belton, A. Fonseca, J. B. Nagy, Y. K. Gun'ko, and W. J. Blau, Adv. Funct. Mater. 14, 791 (2004).
http://dx.doi.org/10.1002/adfm.200305200
14.
14.S. Gotovac, H. Honda, Y. Hattori, K. Takahashi, H. Kanoh, and K. Kaneko, Nano Lett. 7, 583 (2007).
http://dx.doi.org/10.1021/nl0622597
15.
15.F. Chen, B. Wang, Y. Chen, and L. -J. Li, Nano Lett. 7, 3013 (2007).
http://dx.doi.org/10.1021/nl071349o
16.
16.J. N. Coleman and M. S. Ferreira, Appl. Phys. Lett. 84, 798 (2004).
http://dx.doi.org/10.1063/1.1643538
17.
17.M. J. O’Connell, P. Boul, L. M. Ericson, C. Huffman, Y. H. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, and R. E. Smalley, Chem. Phys. Lett. 342, 265 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00490-0
18.
18.Y. K. Kang, O. -S. Lee, P. Deria, S. H. Kim, T. -H. Park, D. A. Bonnell, J. G. Saven, and M. J. Therien, Nano Lett. 9, 1414 (2009).
http://dx.doi.org/10.1021/nl8032334
19.
19.R. G. S. Goh, N. Motta, J. M. Bell, and E. R. Waclawik, Appl. Phys. Lett. 88, 053101 (2006).
http://dx.doi.org/10.1063/1.2168514
20.
20.L. C. Venema, V. Meunier, P. Lambin, and C. Dekker, Phys. Rev. B 61, 2991 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.2991
21.
21.M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
http://dx.doi.org/10.1126/science.1072631
22.
22.I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).
http://dx.doi.org/10.1063/1.2432410
23.
23.Note: Polymer 3D structure generated with Archim v2.1.http://www.archimy.com.
24.
24.E. Mena-Osteritz, Adv. Mater. (Weinheim, Ger.) 14, 609 (2002).
http://dx.doi.org/10.1002/1521-4095(20020418)14:8<609::AID-ADMA609>3.0.CO;2-7
25.
25.B. Mccarthy, J. N. Coleman, R. Czerw, A. B. Dalton, M. I. H. Panhuis, A. Maiti, A. Drury, P. Bernier, J. B. Nagy, B. Lahr, H. J. Byrne, D. L. Carroll, and W. J. Blau, J. Phys. Chem. B 106, 2210 (2002).
http://dx.doi.org/10.1021/jp013745f
26.
26.C. Wei, Nano Lett. 6, 1627 (2006).
http://dx.doi.org/10.1021/nl0605770
27.
27.B. Kraabel, D. Moses, and A. J. Heeger, J. Chem. Phys. 103, 5102 (1995).
http://dx.doi.org/10.1063/1.470597
28.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/1/10.1063/1.3173825
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Unfiltered STM image of a MWCNT covered by rrP3HT self-organized into a coiled structure. Image acquired using a bias voltage and a current . The scale bar measures 12 nm. The angles indicated with , , and result to 52°, 52°, and 54°, respectively. The rectangle indicates the zoom-in area used to generate Fig. 2. (b) Schematic representation of a double helical structure with coils equally spaced at a distance . (c) FFT power spectrum calculated from the profile line traced along the main axis of the NT. The peak reveals an average period of . (Inset) A schematic representation of rrP3HT chains interpenetrating at distance .

Image of FIG. 2.

Click to view

FIG. 2.

(a) Zoom-in image of the square zone indicated in Fig. 1(a). The nanotube dimension have been measured along the lines and . The diameter of the polymer coils is . (b) The simple geometrical model relating the coiled nanotube with radius , the coiling angle , and the helix period .

Image of FIG. 3.

Click to view

FIG. 3.

(a) STM image of a partially rrP3HT-covered CNT. Image acquired using a bias voltage and a current . (b) High pass-filtered image in the zone indicated by the white dashed-line square. The hexagonal cells are reported to highlight the nanotube structure. The distance between the lines is 0.23 nm. (c) Mathematical model added for comparison. (d) STM image of the polymer-covered CNT. Two angles and are used to evidence the preferred direction on which the polymer is aligned on the nanotube surface. Line is used to show the pseudoperiod of the structure that results to 5.58 nm. (e) (15,0) Zigzag nanotube with 30°-inclined carbon hexagonal cells alignments highlighted and reported for comparison.

Loading

Article metrics loading...

/content/aip/journal/apl/95/1/10.1063/1.3173825
2009-07-08
2014-04-16

Abstract

Mixtures of regioregular poly(3-hexyl-thiophene) (rrP3HT) and multiwall carbon nanotubes have been investigated by scanning tunneling microscopy in ultrahigh vacuum. Carbon nanotubes covered by rrP3HT have been imaged and analyzed, providing a clear evidence that this polymer self-assembles on the nanotube surface following geometrical constraints and adapting its equilibrium chain-to-chain distance. Largely spaced covered nanotubes have been analyzed to investigate the role played by nanotubechirality in the polymer wrapping, evidencing strong rrP3HT interactions along well defined directions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/1/1.3173825.html;jsessionid=l516i6wbnqj2.x-aip-live-01?itemId=/content/aip/journal/apl/95/1/10.1063/1.3173825&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Regioregular poly(3-hexyl-thiophene) helical self-organization on carbon nanotubes
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/1/10.1063/1.3173825
10.1063/1.3173825
SEARCH_EXPAND_ITEM