1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/11/10.1063/1.3216845
1.
1.K. Tiedtke, A. Azima, N. von Bargen, L. Bittner, S. Bonfigt, S. Düsterer, B. Faatz, U. Frühling, M. Gensch, Ch. Gerth, N. Guerassimova, U. Hahn, T. Hans, M. Hesse, K. Honkavaar, U. Jastrow, P. Juranic, S. Kapitzki, B. Keitel, T. Kracht, M. Kuhlmann, W. B. Li, M. Martins, T. Nuñez, E. Plönjes, H. Redlin, E. L. Saldin, E. A. Schneidmiller, J. R. Schneider, S. Schreiber, N. Stojanovic, F. Tavella, S. Toleikis, R. Treusch, H. Weigelt, M. Wellhöfer, H. Wabnitz, M. V. Yurkov, and J. Feldhaus, New J. Phys. 11, 023029 (2009).
http://dx.doi.org/10.1088/1367-2630/11/2/023029
2.
2.H. Winick, K. Bane, R. Boyce, J. Cobb, G. Loew, P. Morton, H. D. Nuhn, J. Paterson, P. Pianetta, T. Raubenheimer, C. Pellegrini, J. Rosenweiz, G. Ttravish, D. Prosnitz, E. T. Scharlemann, K. Halbach, K. J. Kim, R. Schlueter, M. Xie, R. Bonifacio, L. DeSalvo, and P. Pierini, Nucl. Instrum. Methods Phys. Res. A 347, 199 (1994).
http://dx.doi.org/10.1016/0168-9002(94)91878-3
3.
3.W. Decking, The European XFEL Project, in Brilliant Light in Life and Material Sciences (Springer, Netherlands, 2007).
4.
4.SCSS X-FEL Conceptional Design Report, edited by T. Tanaka and T. Shintake (Riken Harima Institute, Hyogo, Japan, 2005).
5.
5.R. Tatchyn, J. Arthur, R. Boyce, T. Cremer, A. Fasso, J. Montgomery, V. Vylet, D. Walz, R. Yotam, A. K. Freund, and M. R. Howells, Proc. SPIE 3154, 174 (1997).
http://dx.doi.org/10.1117/12.293363
6.
6.R. Bionta, LCLS Technical Note LCLS-TN-00–3, available at http://www-ssrl.slac.stanford.edu/lcls/technotes/.
7.
7.R. A. London, R. M. Bionta, R. O. Tatchyn, and S. Roesler, Proc. SPIE 4500, 51 (2001).
http://dx.doi.org/10.1117/12.452958
8.
8.A. Wootton, J. Arthur, T. Barbee, R. Bionta, R. London, H. -S. Park, D. Ryutov, E. Spiller, and R. Tatchyn, Proc. SPIE 4500, 113 (2001).
http://dx.doi.org/10.1117/12.452962
9.
9.D. D. Ryutov, Rev. Sci. Instrum. 74, 3722 (2003).
http://dx.doi.org/10.1063/1.1590747
10.
10.M. Bergh, N. Timneanu, S. P. Hau-Riege, and H. A. Scott, Phys. Rev. E 77, 026404 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.026404
11.
11.S. P. Hau-Riege, R. A. London, R. M. Bionta, M. A. McKernan, S. L. Baker, J. Krzywinski, R. Sobierajski, R. Nietubyc, J. B. Pelka, M. Jurek, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, A. Velyhan, J. Krasa, J. Kuba, K. Tiedtke, S. Toleikis, Th. Tschentscher, H. Wabnitz, M. Bergh, C. Caleman, K. Sokolowski-Tinten, N. Stojanovic, and U. Zastrau, Appl. Phys. Lett. 90, 173128 (2007).
http://dx.doi.org/10.1063/1.2734366
12.
12.S. P. Hau-Riege, R. A. London, R. M. Bionta, R. Soufli, D. Ryutov, M. Shirk, S. L. Baker, P. M. Smith, and P. Nataraj, Appl. Phys. Lett. 93, 201105 (2008).
http://dx.doi.org/10.1063/1.3021081
13.
13. is the nominal stoichiometry.
14.
14.R. Soufli, A. L. Aquila, F. Salmassi, M. Fernández-Perea, and E. M. Gullikson, Appl. Opt. 47, 4633 (2008).
http://dx.doi.org/10.1364/AO.47.004633
15.
15.R. Soufli, S. L. Baker, J. C. Robinson, E. M. Gullikson, T. J. McCarville, M. J. Pivovaroff, P. Stefan, S. P. Hau-Riege, and R. Bionta, Proc. SPIE7361, 73610U (2009).
http://dx.doi.org/10.1117/12.823836
16.
16.J. A. Thornton, J. Vac. Sci. Technol. A 4, 3059 (1986).
http://dx.doi.org/10.1116/1.573628
17.
17.T. Eckardt, K. Bewilogua, G. van der Kolk, T. Hurkmans, T. Trinh, and W. Fleischer, Surf. Coat. Technol. 126, 69 (2000).
http://dx.doi.org/10.1016/S0257-8972(00)00525-9
18.
18.Z. Han, G. Li, J. Tian, and M. Gu, Mater. Lett. 57, 899 (2002).
http://dx.doi.org/10.1016/S0167-577X(02)00892-3
19.
19.K. Tiedtke, J. Feldhaus, U. Hahn, U. Jastrow, T. Nunez, T. Tschentscher, S. V. Bobashev, A. A. Sorokin, J. B. Hastings, S. Möller, L. Cibik, A. Gottwald, A. Hoehl, U. Kroth, M. Krumrey, H. Schöppe, G. Ulm, and M. Richter, J. Appl. Phys. 103, 094511 (2008).
http://dx.doi.org/10.1063/1.2913328
20.
20.E. L. Saldin, A. E. Schneidmiller, and M. V. Yurkov, The Physics of Free Electron Lasers (Springer, Heidelberg, 2000).
21.
21.We used the ZYGO white light interferometer fabricated by ZYGO Corp., Middlefield, CT.
22.
22.J. M. Liu, Opt. Lett. 7, 196 (1982).
http://dx.doi.org/10.1364/OL.7.000196
23.
23.J. Chalupsky, L. Juha, J. Kuba, V. Hajkova, J. Cihelka, P. Homer, M. Kozlova, T. Mocek, J. Polan, B. Rus, J. Krzywinsky, R. Sobierajski, H. Wabnitz, J. Feldhaus, and K. Tiedtke, Proc. SPIE 6586, 65860S (2007).
http://dx.doi.org/10.1117/12.724385
24.
24.L. Juha, M. Bittner, M. De Grazia, J. Feldhaus, J. Gaudin, S. Guizard, S. Jacobi, M. Kozlová, J. Krása, J. Krzywinski, H. Merdji, C. Michaelsen, T. Mocek, R. Nietubyc, M. Jurek, J. Polan, A. R. Präg, B. Rus, R. Sobierajski, B. Steeg-Keitel, M. Störmer, M. Stupka, V. Vorlíek, J. Wiesmann, and J. Wild, Proc. SPIE 5917, 59170F (2005).
http://dx.doi.org/10.1117/12.617125
25.
25.S. P. Hau-Riege, H. N. Chapman, J. Krzywinski, R. Sobierajski, S. Bajt, R. A. London, M. Bergh, C. Caleman, R. Nietubyc, L. Juha, J. Kuba, E. Spiller, S. Baker, R. Bionta, K. Sokolowski Tinten, N. Stojanovic, B. Kjornrattanawanich, E. Gullikson, E. Plönjes, S. Toleikis, and Th. Tschentscher, Phys. Rev. Lett. 98, 145502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.145502
26.
26.NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P. J. Linstrom and W. G. Mallard (National Institute of Standards and Technology, Gaithersburg MD, 2005).
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/11/10.1063/1.3216845
Loading
/content/aip/journal/apl/95/11/10.1063/1.3216845
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/95/11/10.1063/1.3216845
2009-09-14
2014-09-16

Abstract

We exposed bulk SiC and films of SiC and to single 25 fs long free-electron-laser pulses with wavelengths between 13.5 and 32 nm. The materials are candidates for x-rayfree-electron laseroptics. We found that the threshold for surface-damage of the bulk SiC samples exceeds the fluence required for thermal melting at all wavelengths. The damage threshold of the film sample shows a strong wavelength dependence. For wavelengths of 13.5 and 21.7 nm, the damage threshold is equal to or exceeds the melting threshold, whereas at 32 nm the damage threshold falls below the melting threshold.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/11/1.3216845.html;jsessionid=6530ll08as33.x-aip-live-02?itemId=/content/aip/journal/apl/95/11/10.1063/1.3216845&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/11/10.1063/1.3216845
10.1063/1.3216845
SEARCH_EXPAND_ITEM