1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Role of the deep-lying electronic states of in the enhancement of hole-injection in organic thin films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/12/10.1063/1.3231928
1.
1.K. J. Reynolds, J. A. Barker, N. C. Greenham, R. H. Friend, and G. L. Frey, J. Appl. Phys. 92, 7556 (2002).
http://dx.doi.org/10.1063/1.1522812
2.
2.C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang, Appl. Phys. Lett. 87, 193508 (2005).
http://dx.doi.org/10.1063/1.2126140
3.
3.S. Tokito, K. Noda, and Y. Taga, J. Phys. D 29, 2750 (1996).
http://dx.doi.org/10.1088/0022-3727/29/11/004
4.
4.J. Meyer, S. Hamwi, T. Bulow, H. H. Johannes, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91, 113506 (2007).
http://dx.doi.org/10.1063/1.2784176
5.
5.H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, J. Appl. Phys. 101, 026105 (2007).
http://dx.doi.org/10.1063/1.2430511
6.
6.X. L. Zhu, J. X. Sun, X. M. Yu, M. Wong, and H. S. Kwok, Jpn. J. Appl. Phys., Part 1 46, 1033 (2007).
http://dx.doi.org/10.1143/JJAP.46.1033
7.
7.T. Matsushima, Y. Kinoshita, and H. Murata, Appl. Phys. Lett. 91, 253504 (2007).
http://dx.doi.org/10.1063/1.2825275
8.
8.M. Hoping, C. Schildknecht, H. Gargouri, T. Riedl, M. Tilgner, H. H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 92, 213306 (2008).
http://dx.doi.org/10.1063/1.2936301
9.
9.H. Lee, S. W. Cho, K. Han, P. E. Jeon, C. N. Whang, K. Jeong, K. Cho, and Y. Yi, Appl. Phys. Lett. 93, 043308 (2008).
http://dx.doi.org/10.1063/1.2965120
10.
10.F. X. Wang, X. F. Qiao, T. Xiong, and D. G. Ma, Org. Electron. 9, 985 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.07.009
11.
11.J. Hwang, A. Wan, and A. Kahn, Mater. Sci. Eng. R. 64, 1 (2009).
http://dx.doi.org/10.1016/j.mser.2008.12.001
12.
12.Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic, and S. R. Forrest, Phys. Rev. B 54, 13748 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.13748
13.
13.W. Y. Gao and A. Kahn, J. Appl. Phys. 94, 359 (2003).
http://dx.doi.org/10.1063/1.1577400
14.
14.A. Kahn, N. Koch, and W. Y. Gao, J. Polym. Sci., Part B: Polym. Phys. 41, 2529 (2003).
http://dx.doi.org/10.1002/polb.10642
15.
15.M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, Org. Electron. 10, 932 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.05.007
16.
16.T. S. Sian and G. B. Reddy, Sol. Energy Mater. Sol. Cells 82, 375 (2004).
http://dx.doi.org/10.1016/j.solmat.2003.12.007
17.
17.P. A. Cox, Transition Metal Oxides: An Introduction to their Electronic Structure and Properties (Clarendon/Oxford University Press, Oxford/New York, 1992).
18.
18.D. R. Lide, CRC Handbook of Chemistry and Physics, 89th ed., (CRC/Taylor and Francis, Boca Raton/London, 2009).
19.
19.A. Galtayries, S. Wisniewski, and J. Grimblot, J. Electron Spectrosc. Relat. Phenom. 87, 31 (1997).
http://dx.doi.org/10.1016/S0368-2048(97)00071-6
20.
20.J. G. Choi and L. T. Thompson, Appl. Surf. Sci. 93, 143 (1996).
http://dx.doi.org/10.1016/0169-4332(95)00317-7
21.
21.F. Werfel and E. Minni, J. Phys. C 16, 6091 (1983).
http://dx.doi.org/10.1088/0022-3719/16/31/022
22.
22.J. Hwang, E. -G. Kim, J. Liu, J. -L. Brédas, A. Duggal, and A. Kahn, J. Phys. Chem. C 111, 1378 (2007).
http://dx.doi.org/10.1021/jp067004w
23.
23.S. Braun, W. Osikowicz, Y. Wang, and W. R. Salaneck, Org. Electron. 8, 14 (2007).
http://dx.doi.org/10.1016/j.orgel.2006.10.006
24.
24.C. Tao, S. P. Ruan, X. D. Zhang, G. H. Xie, L. Shen, X. Z. Kong, W. Dong, C. X. Liu, and W. Y. Chen, Appl. Phys. Lett. 93, 193307 (2008).
http://dx.doi.org/10.1063/1.3026741
25.
25.C. C. Chang, J. F. Chen, S. W. Hwang, and C. H. Chen, Appl. Phys. Lett. 87, 253501 (2005).
http://dx.doi.org/10.1063/1.2147730
26.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/12/10.1063/1.3231928
Loading
/content/aip/journal/apl/95/12/10.1063/1.3231928
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/95/12/10.1063/1.3231928
2009-09-22
2014-09-17

Abstract

The electronic structures of vacuum-deposited molybdenum trioxide and of a typical /hole transport material (HTM) interface are determined via ultraviolet and inverse photoelectron spectroscopy. Electron affinity and ionization energy of are found to be 6.7 and 9.68 eV, more than 4 eV larger than generally assumed, leading to a revised interpretation of the role of in hole injection in organic devices. The films are strongly -type. The electronic structure of the oxide/HTM interface shows that hole injection proceeds via electron extraction from the HTM highest occupied molecular orbital through the low-lying conduction band of .

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/12/1.3231928.html;jsessionid=3c6jr0vvlnmqc.x-aip-live-06?itemId=/content/aip/journal/apl/95/12/10.1063/1.3231928&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/12/10.1063/1.3231928
10.1063/1.3231928
SEARCH_EXPAND_ITEM