1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electron conductance of -bis-(1-naphthl)-diphenyl--biphenyl--diamine at low temperatures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/13/10.1063/1.3237178
1.
1.Z. Shen, P. E. Burrows, V. Bulovic, D. M. McCarty, M. E. Thompson, and S. R. Forrest, Jpn. J. Appl. Phys., Part 2 35, L401 (1996).
http://dx.doi.org/10.1143/JJAP.35.L401
2.
2.H. Mu, D. Klotzkin, A. Silva, H. P. Wagner, D. White, and B. Sharpton, J. Phys. D: Appl. Phys. 41, 235109 (2008).
http://dx.doi.org/10.1088/0022-3727/41/23/235109
3.
3.S. Berleb, A. G. Mückl, W. Brütting, and M. Schwoerer, Synth. Met. 111–112, 341 (2000).
http://dx.doi.org/10.1016/S0379-6779(99)00361-6
4.
4.G. Y. Zhong, X. M. Ding, J. Zhou, N. Jiang, W. Huang, and X. Y. Hou, Chem. Phys. Lett. 420, 347 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.01.005
5.
5.Y. Abe, K. Onisawa, S. Aratani, and M. Hanazono, J. Electrochem. Soc. 139, 641 (1992).
http://dx.doi.org/10.1149/1.2069278
6.
6.P. M. Borsenberger, J. Appl. Phys. 68, 5682 (1990).
http://dx.doi.org/10.1063/1.346983
7.
7.P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys. 79, 7991 (1996).
http://dx.doi.org/10.1063/1.362350
8.
8.M. A. Lapert and P. Mark, Current Injection in Solids (Academic, New York, 1970), Chap. 4.
9.
9.X. D. Gao, J. Zhou, Z. T. Xie, B. F. Ding, Y. C. Qian, X. M. Ding, and X. Y. Hou, Appl. Phys. Lett. 93, 083304 (2008).
http://dx.doi.org/10.1063/1.2969293
10.
10.Z. Y. Xie, L. S. Hung, and S. T. Lee, Appl. Phys. Lett. 79, 1048 (2001).
http://dx.doi.org/10.1063/1.1390479
11.
11.H. Bässler, Phys. Status Solidi B 175, 15 (1993).
http://dx.doi.org/10.1002/pssb.2221750102
12.
12.Z. B. Deng, S. T. Lee, D. P. Webb, Y. C. Chan, and W. A. Gambling, Synth. Met. 107, 107 (1999).
http://dx.doi.org/10.1016/S0379-6779(99)00149-6
13.
13.Y. W. Park, A. J. Heeger, M. A. Druy, and A. G. MacDiarmid, J. Chem. Phys. 73, 946 (1980).
http://dx.doi.org/10.1063/1.440214
14.
14.K. Maki, Phys. Rev. B 26, 2181 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.2181
15.
15.W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).
http://dx.doi.org/10.1103/PhysRevLett.42.1698
16.
16.S. Jeyadev and E. M. Conwell, Phys. Rev. B 36, 3284 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.3284
17.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/13/10.1063/1.3237178
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Current density vs operation voltage at different temperatures for device A. Inset: TD of power law coefficient , obtained by fitting the characteristics to Eq. (1) for device A.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Current efficiency vs temperature for device A. (b) Current efficiency vs temperature for device B. Inset: the EL spectra of device B. (c) Current efficiencies of and DCM vs temperature for device C. (d) Current efficiencies of and DCM vs temperature for device D.

Image of FIG. 3.

Click to view

FIG. 3.

Current efficiency vs temperature for device E.

Image of FIG. 4.

Click to view

FIG. 4.

Current density vs operation voltage at different temperatures for device F. Inset: the current density at 12 V vs temperature.

Image of FIG. 5.

Click to view

FIG. 5.

Current density vs operation voltage at different temperatures for device G. Inset: the current density at 35 V vs temperature.

Tables

Generic image for table

Click to view

Table I.

Layer structures of thin film devices [ (50 nm) (10 nm)].

Loading

Article metrics loading...

/content/aip/journal/apl/95/13/10.1063/1.3237178
2009-10-02
2014-04-21

Abstract

The electron conductance of -bis-(1-naphthl)-diphenyl--biphenyl--diamine was found to increase with decreasing temperature experimentally. This phenomenon is quite abnormal since for most organic materials the conductance increases with increasing temperature. A probable explanation was given according to a previous work about soliton diffusion in polyacetylene within the framework of SSH model.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/13/1.3237178.html;jsessionid=fjvsa8nqga9m.x-aip-live-03?itemId=/content/aip/journal/apl/95/13/10.1063/1.3237178&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electron conductance of N,N′-bis-(1-naphthl)-diphenyl-1,1′-biphenyl-4,4′-diamine at low temperatures
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/13/10.1063/1.3237178
10.1063/1.3237178
SEARCH_EXPAND_ITEM