1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Dual-gate organic thin film transistors as chemical sensors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/13/10.1063/1.3242372
1.
1.Organic Semiconductor in Sensor Applications, edited by D. A. Barnard, R. M. Owens, and G. G. Malliaras (Springer, Heidelberg, 2008).
2.
2.T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, Proc. Natl. Acad. Sci. U.S.A. 101, 9966 (2004).
http://dx.doi.org/10.1073/pnas.0401918101
3.
3.T. Someya, H. E. Katz, A. Gelperin, A. J. Lovinger, and A. Dodabalapur, Appl. Phys. Lett. 81, 3079 (2002).
http://dx.doi.org/10.1063/1.1514826
4.
4.A. Loi, I. Manunza, and A. Bonfiglio, Appl. Phys. Lett. 86, 103512 (2005).
http://dx.doi.org/10.1063/1.1873051
5.
5.T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, Proc. Natl. Acad. Sci. U.S.A. 102, 12321 (2005).
http://dx.doi.org/10.1073/pnas.0502392102
6.
6.I. Manunza, A. Sulis, and A. Bonfiglio, Appl. Phys. Lett. 89, 143502 (2006).
http://dx.doi.org/10.1063/1.2357924
7.
7.B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, and Z. Bao, Appl. Phys. Lett. 78, 2229 (2001).
http://dx.doi.org/10.1063/1.1360785
8.
8.L. Torsi and A. Dodabalapur, Anal. Chem. 77, 380A (2005).
http://dx.doi.org/10.1021/ac053475n
9.
9.L. Torsi, A. Dodabalapur, L. Sabbatini, and P. G. Zambonin, Sens. Actuators B 67, 312 (2000).
http://dx.doi.org/10.1016/S0925-4005(00)00541-4
10.
10.M. E. Roberts, S. C. B. Mannsfeld, N. Queralto, C. Reese, J. Locklin, W. Knoll, and Z. Bao, Proc. Natl. Acad. Sci. U.S.A. 105, 12134 (2008).
http://dx.doi.org/10.1073/pnas.0802105105
11.
11.H. Katz, in Organic Electronics: Materials, Manufacturing and Applications, edited by H. Klauk (Wiley, New York, 2006).
12.
12.J. T. Mabeck and G. G. Malliaras, Anal. Bioanal. Chem. 384, 343 (2006).
http://dx.doi.org/10.1007/s00216-005-3390-2
13.
13.J. M. Charlesworth, A. C. Partridge, and N. Garrard, J. Phys. Chem. 97, 5418 (1993).
http://dx.doi.org/10.1021/j100122a038
14.
14.P. Topart and M. Josowicz, J. Phys. Chem. 96, 7824 (1992).
http://dx.doi.org/10.1021/j100198a059
15.
15.F. Liao, C. Chen, and V. Subramanian, Sens. Actuators B 107, 849 (2005).
http://dx.doi.org/10.1016/j.snb.2004.12.026
16.
16.L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, Nature Mater. 7, 412 (2008).
http://dx.doi.org/10.1038/nmat2167
17.
17.M. L. Chabinyc, F. Endicott, B. D. Vogt, D. M. DeLongchamp, E. K. Lin, Y. Wu, P. Liu, and B. S. Ong, Appl. Phys. Lett. 88, 113514 (2006).
http://dx.doi.org/10.1063/1.2181206
18.
18.A. Salleo and M. L. Chabinyc, in Organic Electronics: Materials, Manufacturing and Applications, edited by H. Klauk (Wiley, New York, 2006).
19.
19.R. A. Street, Phys. Rev. B 77, 165311 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.165311
20.
20.W. S. Wong, M. L. Chabinyc, T. N. Ng, and A. Salleo, in Flexible Electronics: Materials and Applications, edited by A. Salleo and W. S. Wong (Springer, New York, 2009).
21.
21.H. Sirringhaus, Adv. Mater. (Weinheim, Ger.) 17, 2411 (2005).
http://dx.doi.org/10.1002/adma.200501152
22.
22.G. H. Gelinck, E. van Veenendaal, and R. Coehoorn, Appl. Phys. Lett. 87, 073508 (2005).
http://dx.doi.org/10.1063/1.2031933
23.
23.S. Iba, T. Sekitani, Y. Kato, T. Someya, H. Kawaguchi, M. Takamiya, T. Sakurai, and S. Takagi, Appl. Phys. Lett. 87, 023509 (2005).
http://dx.doi.org/10.1063/1.1995958
24.
24.J. S. Meth, S. G. Zane, and G. Nunes, Jr., Appl. Phys. Lett. 84, 2922 (2004).
http://dx.doi.org/10.1063/1.1704875
25.
25.F. M. Li, Y. Vygranenko, S. Koul, and A. Nathan, J. Vac. Sci. Technol. A 24, 657 (2006).
http://dx.doi.org/10.1116/1.2165653
26.
26.F. Maddalena, M. Spijkman, J. J. Brondijk, P. Fonteijn, F. Brouwer, J. C. Hummelen, D. M. de Leeuw, P. W. M. Blom, and B. de Boer, Org. Electron. 9, 839 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.06.004
27.
27.H. K. Lim and J. G. Fossum, IEEE Trans. Electron Devices 30, 1244 (1983).
http://dx.doi.org/10.1109/T-ED.1983.21282
28.
28.I. McCullough, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. Chabinyc, R. J. Kline, M. D. McGehee, and M. F. Toney, Nature Mater. 5, 328 (2006).
http://dx.doi.org/10.1038/nmat1612
29.
29.S. Ferrari, F. Perissinotti, E. Peron, L. Fumagalli, D. Natali, and M. Sampietro, Org. Electron. 8, 407 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.02.004
30.
30.L. Fumagalli, M. Binda, I. S. Lopez, D. Natali, M. Sampietro, S. Ferrari, L. Lamagna, and M. Fanciulli, Org. Electron. 10, 692 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.03.003
31.
31.S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nature Mater. 3, 317 (2004).
http://dx.doi.org/10.1038/nmat1105
32.
32.K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, and G. Schitter, J. Appl. Phys. 96, 6431 (2004).
http://dx.doi.org/10.1063/1.1810205
33.
33.A. Ulman, Chem. Rev. (Washington, D.C.) 96, 1533 (1996).
http://dx.doi.org/10.1021/cr9502357
34.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/13/10.1063/1.3242372
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Transfer curves of a P3HT DG-SFET exposed to a saturated environment at room temperature for different time intervals. (b) Transfer characteristics of a conventional bottom gate P3HT OTFT exposed to the same atmosphere as in (a).

Image of FIG. 2.

Click to view

FIG. 2.

(a) Transfer curves of a PBTTT DG-SFET exposed to a saturated environment at room temperature for different time intervals [same conditions as in Fig. 1(a)]. (b) Transfer characteristics of a conventional bottom gate PBTTT OTFT.

Image of FIG. 3.

Click to view

FIG. 3.

Effect of top dielectric thickness on the response of a PBTTT DG-SFET exposed to saturated environment at room temperature. The thickness was estimated by ellipsometry on a Si chip positioned next to the device during ALD.

Loading

Article metrics loading...

/content/aip/journal/apl/95/13/10.1063/1.3242372
2009-10-02
2014-04-16

Abstract

An organic/inorganic hybrid sensing device is proposed based on a dual-gate organic thin film transistor architecture using polythiophenes as semiconductors and as the top dielectric. When a polar molecule adsorbs on the top dielectric, the threshold voltage of the bottom gate transistor shifts leading to several orders of magnitude increase of the current at an appropriately chosen gate voltage. The devices are tested by exposing them to a saturated water atmosphere, which leads to a four orders of magnitude current increase within one minute. This sensor design maintains some advantages of organic semiconductors such as low-temperature processing and fabrication on flexible substrates. Finally, it can be operated at low voltages with the potential for extremely low-power operation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/13/1.3242372.html;jsessionid=1j47hod1mcblq.x-aip-live-01?itemId=/content/aip/journal/apl/95/13/10.1063/1.3242372&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dual-gate organic thin film transistors as chemical sensors
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/13/10.1063/1.3242372
10.1063/1.3242372
SEARCH_EXPAND_ITEM