1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Temperature-dependent transition from injection-limited to space-charge-limited current in metal-organic diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/14/10.1063/1.3243844
1.
1.M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, Oxford, 1999).
2.
2.H. A. Bethe, MIT Radiat. Lab. Report 43, 12 (1942).
3.
3.W. Schottky, Z. Phys.32, 833 (1931).
4.
4.M. A. Lambert and P. Mark, Current Injection in Solids (Academic, New York, 1970).
5.
5.O. D. Jurchescu, J. Baas, and T. T. M. Palstra, Appl. Phys. Lett. 84, 3061 (2004).
http://dx.doi.org/10.1063/1.1704874
6.
6.N. Koch, A. Vollmer, I. Salzmann, B. Nickel, H. Weiss, and J. P. Rabe, Phys. Rev. Lett. 96, 156803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.156803
7.
7.M. A. Abkowitz, H. A. Mizes, and J. S. Facci, Appl. Phys. Lett. 66, 1288 (1995).
http://dx.doi.org/10.1063/1.113272
8.
8.V. I. Arkhipov, E. V. Emelianova, Y. H. Tak, and H. Bässler, J. Appl. Phys. 84, 848 (1998).
http://dx.doi.org/10.1063/1.368146
9.
9.S. Barth, U. Wolf, H. Bässler, P. Müller, H. Riel, H. Vestweber, P. F. Seidler, and W. Rieß, Phys. Rev. B 60, 8791 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.8791
10.
10.T. van Woudenbergh, P. W. M. Blom, M. C. J. M. Vissenberg, and J. N. Huiberts, Appl. Phys. Lett. 79, 1697 (2001).
http://dx.doi.org/10.1063/1.1395515
11.
11.V. I. Arkhipov, U. Wolf, and H. Bässler, Phys. Rev. B 59, 7514 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7514
12.
12.V. I. Arkhipov, H. von Seggern, and E. V. Emelianova, Appl. Phys. Lett. 83, 5074 (2003).
http://dx.doi.org/10.1063/1.1633967
13.
13.Y. Zheng, D. C. Qi, N. Chandrasekhar, X. Y. Gao, C. Troadec, and A. T. S. Wee, Langmuir 23, 8336 (2007).
http://dx.doi.org/10.1021/la063165f
14.
14.Y. Zheng, X. Y. Gao, D. C. Qi, A. T. S. Wee, C. Troadec, and N. Chandrasekhar, (unpublished).
15.
15.H. Kakuta, T. Hirahara, I. Matsuda, T. Nagao, S. Hasegawa, N. Ueno, and K. Sakamoto, Phys. Rev. Lett. 98, 247601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.247601
16.
16.The field-dependent mobility [see P. W. M. Blom, M. J. M. de Jong and M. G. van Munster, Phys. Rev. B 55, R656 (1997)] can be included by replacing in Eq. (2).
http://dx.doi.org/10.1103/PhysRevB.55.R656
17.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/14/10.1063/1.3243844
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Typical crystal structure of planar -conjugated semiconductors. Two inequivalent molecules are herringbone-packed in the plane with relatively strong intermolecular interaction, while along the -axis, molecules are bound by van der Waals force with negligible electronic coupling. (b) Sample geometry of Ag/Pn/Ag diodes and the experimental setup for charge transport measurements. (c) Scanning tunneling microscopy shows that the top Ag forms a continuous film with a typical granular surface. (d) Metal diffusion layer at MO interface due to direct metal evaporation on organic thin film. TEM cross-section of Au/Pn/Si.

Image of FIG. 2.

Click to view

FIG. 2.

RT characteristics of one Ag/Pn/Ag diode. The inset shows the same curve in log scale. The polarity of the bias is defined in Fig. 1(b).

Image of FIG. 3.

Click to view

FIG. 3.

(a) Temperature-dependent characteristics of the Ag/Pn/Ag diode. Different symbols are experimental at different temperatures. Solid lines are the calculated . The dashed cyan line gives one example of the intrinsic SCLC fitting to . The ratio increases as a function of temperature due to SCLC-to-ILC transition in . (b) Spatial distribution of the electric field in the Ag/Pn/Ag diode as a function of temperature. A transition from ILC to SCLC can be clearly seen. (c) Hole mobility, extracted from the SCLC data fitting of , as a function of inverse temperature. The red line is a thermal-activation fitting of the mobility curve with and .

Loading

Article metrics loading...

/content/aip/journal/apl/95/14/10.1063/1.3243844
2009-10-07
2014-04-18

Abstract

Based on the assumption that the contact barrier height determines the current flow in organic semiconductor-based electronic devices, charge injection at metal-organic (MO) interfaces has been extensively investigated, while space-charge conduction in organic bulk is generally overlooked. Recent theoretical modeling and simulation have pointed out that such a simplification is questionable due to the hopping nature of charge injection and hopping-related space-charge conduction. Here we show experimentally that chargetransport in MO diodes is a complex interplay between injection-limited current (ILC) and space-charge-limited current (SCLC). We report the experimental observation of ILC-to-SCLC transition in Ag/pentacene/Ag diodes as a function of temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/14/1.3243844.html;jsessionid=7trns1c4setn7.x-aip-live-02?itemId=/content/aip/journal/apl/95/14/10.1063/1.3243844&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Temperature-dependent transition from injection-limited to space-charge-limited current in metal-organic diodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/14/10.1063/1.3243844
10.1063/1.3243844
SEARCH_EXPAND_ITEM