1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
An inverted organic solar cell with an ultrathin Ca electron-transporting layer and hole-transporting layer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/15/10.1063/1.3250176
1.
1.W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
http://dx.doi.org/10.1002/adfm.200500211
2.
2.M. Reyes-Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).
http://dx.doi.org/10.1063/1.2006986
3.
3.L. M. Chen, Z. R. Hong, G. Li, and Y. Yang, Adv. Mater. 21, 1434 (2009).
http://dx.doi.org/10.1002/adma.200802854
4.
4.J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007).
http://dx.doi.org/10.1126/science.1141711
5.
5.K. Kim, J. Liu, M. A. G. Namboothiry, and D. L. Carroll, Appl. Phys. Lett. 90, 163511 (2007).
http://dx.doi.org/10.1063/1.2730756
6.
6.M. Jorgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.005
7.
7.C. Tao, S. P. Ruan, X. D. Zhang, G. H. Xie, L. Shen, X. Z. Kong, W. Dong, C. X. Liu, and W. Y. Chen, Appl. Phys. Lett. 93, 193307 (2008).
http://dx.doi.org/10.1063/1.3026741
8.
8.S. K. Hau, H. L. Yip, H. Ma, and A. K. Y. Jen, Appl. Phys. Lett. 93, 233304 (2008).
http://dx.doi.org/10.1063/1.3028094
9.
9.A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, Appl. Phys. Lett. 93, 221107 (2008).
http://dx.doi.org/10.1063/1.3039076
10.
10.G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Appl. Phys. Lett. 88, 253503 (2006).
http://dx.doi.org/10.1063/1.2212270
11.
11.H. H. Liao, L. M. Chen, Z. Xu, G. Li, and Y. Yang, Appl. Phys. Lett. 92, 173303 (2008).
http://dx.doi.org/10.1063/1.2918983
12.
12.R. Steim, S. A. Choulis, P. Schilinsky, and C. J. Brabec, Appl. Phys. Lett. 92, 093303 (2008).
http://dx.doi.org/10.1063/1.2885724
13.
13.C. Tao, S. P. Ruan, G. H. Xie, X. Z. Kong, L. Shen, F. X. Meng, C. X. Liu, X. D. Zhang, W. Dong, and W. Y. Chen, Appl. Phys. Lett. 94, 043311 (2009).
http://dx.doi.org/10.1063/1.3076134
14.
14.T. Ameri, G. Dennler, C. Waldauf, P. Denk, K. Forberich, M. C. Scharber, C. J. Brabec, and K. Hingerl, J. Appl. Phys. 103, 084506 (2008).
http://dx.doi.org/10.1063/1.2902804
15.
15.C. Brabec, V. Dyakonov, J. Parisi, and N. S. Sariciftci, Organic Photovoltaics: Concepts and Realization (Springer, Berlin, 2003).
16.
16.P. W. M. Blom, M. J. M. deJong, and J. J. M. Vleggaar, Appl. Phys. Lett. 68, 3308 (1996).
http://dx.doi.org/10.1063/1.116583
17.
17.D. W. Zhao, X. W. Sun, C. Y. Jiang, A. K. K. Kyaw, G. Q. Lo, and D. L. Kwong, Appl. Phys. Lett. 93, 083305 (2008).
http://dx.doi.org/10.1063/1.2976126
18.
18.D. W. Zhao, X. W. Sun, C. Y. Jiang, A. K. K. Kyaw, G. Q. Lo, and D. L. Kwong, IEEE Electron Device Lett. 30, 490 (2009).
http://dx.doi.org/10.1109/LED.2009.2015686
19.
19.P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
20.
20.M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, Org. Electron. 10, 932 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.05.007
21.
21.A. K. Pandey, P. E. Shaw, I. D. W. Samuel, and J. M. Nunzi, Appl. Phys. Lett. 94, 103303 (2009).
http://dx.doi.org/10.1063/1.3098472
22.
22.L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
23.
23.I. D. Parker, J. Appl. Phys. 75, 1656 (1994).
http://dx.doi.org/10.1063/1.356350
24.
24.G. G. Malliaras, J. R. Salem, P. J. Brock, and J. C. Scott, J. Appl. Phys. 84, 1583 (1998).
http://dx.doi.org/10.1063/1.368227
25.
25.C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater. 11, 374 (2001).
http://dx.doi.org/10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W
26.
26.V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett. 88, 073508 (2006).
http://dx.doi.org/10.1063/1.2174093
27.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/15/10.1063/1.3250176
Loading
/content/aip/journal/apl/95/15/10.1063/1.3250176
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/95/15/10.1063/1.3250176
2009-10-16
2014-07-11

Abstract

An inverted organic solar cell based on poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl- (PCBM) was fabricated with an ultrathin Ca electron-transporting layer and hole-transporting layer. The 1 nm Ca on indium tin oxide (ITO) electrode modifies the work function of ITO suitable for electron extraction. An appropriate thickness of hole extraction layer is also essential to effectively prevent exciton quenching at the Aganode, yet not introduce much voltage loss and series resistance. The optical field distribution across the active layer was also simulated to discuss the effect of thickness on the photocurrent. The maximum power conversion efficiency obtained was 3.55% under simulated (AM 1.5G) solar irradiation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/15/1.3250176.html;jsessionid=9ikpk03oa2sqh.x-aip-live-03?itemId=/content/aip/journal/apl/95/15/10.1063/1.3250176&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/15/10.1063/1.3250176
10.1063/1.3250176
SEARCH_EXPAND_ITEM