1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/16/10.1063/1.3245319
1.
1.R. Herda, T. Hakulinen, S. Suomalainen, and O. G. Okhotnikov, Appl. Phys. Lett. 87, 211105 (2005).
http://dx.doi.org/10.1063/1.2133924
2.
2.J. M. Lupton, R. Koeppe, J. G. Müller, J. Feldmann, U. Scherf, and U. Lemmer, Adv. Mater. 15, 1471 (2003).
http://dx.doi.org/10.1002/adma.200301644
3.
3.H. Cao, D. B. Hall, J. M. Torkelson, and C. -Q. Cao, Appl. Phys. Lett. 76, 538 (2000).
http://dx.doi.org/10.1063/1.125811
4.
4.M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, J. Phys. D: Appl. Phys. 39, R151 (2006).
http://dx.doi.org/10.1088/0022-3727/39/8/R01
5.
5.L. Martiradonna, L. Carbone, M. De Giorgi, L. Manna, G. Gigli, R. Cingolani, and M. De Vittorio, Appl. Phys. Lett. 88, 181108 (2006).
http://dx.doi.org/10.1063/1.2200748
6.
6.S. I. Khartsev and A. M. Grishin, J. Appl. Phys. 101, 053906 (2007).
http://dx.doi.org/10.1063/1.2437051
7.
7.T. V. Murzina, F. Yu. Sychev, I. A. Kolmychek, and O. A. Aktsipetrov, Appl. Phys. Lett. 90, 161120 (2007).
http://dx.doi.org/10.1063/1.2724928
8.
8.F. Jin, C. -F. Li, X. -Z. Dong, W. -Q. Chen, and X. -M. Duan, Appl. Phys. Lett. 89, 241101 (2006).
http://dx.doi.org/10.1063/1.2404941
9.
9.M. Theander, T. Granlund, D. M. Johanson, A. Ruseckas, V. Sundström, M. R. Andersson, and O. Inganäs, Adv. Mater. 13, 323 (2001).
http://dx.doi.org/10.1002/1521-4095(200103)13:5<323::AID-ADMA323>3.0.CO;2-X
10.
10.P. D. García, A. Blanco, A. Shavel, N. Gaponik, A. Eychmüller, B. Rodríguez, L. Liz, and C. López, Adv. Mater. 18, 2768 (2006).
http://dx.doi.org/10.1002/adma.200600376
11.
11.Z. Deng, Y. Zhan, H. Duan, Z. Xiong, F. Bai, and Y. Wang, Synth. Met. 129, 299 (2002).
http://dx.doi.org/10.1016/S0379-6779(02)00100-5
12.
12.R. J. Holmes and S. R. Forrest, Phys. Rev. Lett. 93, 186404 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.186404
13.
13.R. L. Smith and S. D. Collins, J. Appl. Phys. 71, R1 (1992).
http://dx.doi.org/10.1063/1.350839
14.
14.L. Brzozowski and E. H. Sargent, J. Mater. Sci. Mater. Electron. 12, 483 (2001).
http://dx.doi.org/10.1023/A:1012446007088
15.
15.D. V. Petrov, A. S. L. Gomes, and C. B. de Araujo, Appl. Phys. Lett. 65, 1067 (1994).
http://dx.doi.org/10.1063/1.112175
16.
16.M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, Opt. Lett. 14, 955 (1989).
http://dx.doi.org/10.1364/OL.14.000955
17.
17.S. Yamakawa, K. Hamashima, T. Knoshita, and K. Kasaki, Appl. Phys. Lett. 72, 1562 (1998).
http://dx.doi.org/10.1063/1.121115
18.
18.I. Razdolski, R. Kapra, T. Murzina, O. Aktsipetrov, and M. Inoue, JETP 84, 451 (2006).
http://dx.doi.org/10.1134/S0021364006200094
19.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/16/10.1063/1.3245319
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic of the hybrid DBR/MC/DBR structure (a) and the SEM image of the same structure (b). The dark and bright gray stripes correspond to layers with low and high porosities. The MC layer in the center represents the polymer layer made by spin coating, sandwiched between the two DBR structures.

Image of FIG. 2.

Click to view

FIG. 2.

Pictures of a freestanding top mirror (a) and an assembled hybrid MC (b).

Image of FIG. 3.

Click to view

FIG. 3.

Spectra of the reflectance coefficient for all-porous-silicon MC (dash line) and a hybrid MC (solid line) with similar structural parameters for the top and bottom mirrors.

Image of FIG. 4.

Click to view

FIG. 4.

-scan of the fabricated hybrid MC (dark circles). The inset in the top left corner is a schematic of the experiment while the bottom right corner inset represents the dependence of the light intensity detected by the open-aperture detector as a function of the distance between the hybrid MC sample and the focus of the lens.

Loading

Article metrics loading...

/content/aip/journal/apl/95/16/10.1063/1.3245319
2009-10-19
2014-04-17

Abstract

A vertical hybrid microcavity is fabricated by sandwiching a polymer layer between distributed Bragg reflectors(DBRs) composed of porous silicon photonic crystals. The DBRs are made by electrochemical etching of Si and consist of alternating porous Si layers of high and low porosity, the top DBR being a freestanding film. The hybrid microcavity demonstrates a deep microcavity mode placed within a 200 nm wide photonic band gap, and reveals a many-fold enhancement of the third-order nonlinearity of the microcavity layer. The fabrication technique employed is rather simple, enabling the use of a variety of functional materials as the microcavity spacer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/16/1.3245319.html;jsessionid=3lbiuprk1i5p5.x-aip-live-06?itemId=/content/aip/journal/apl/95/16/10.1063/1.3245319&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Vertical hybrid microcavity based on a polymer layer sandwiched between porous silicon photonic crystals
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/16/10.1063/1.3245319
10.1063/1.3245319
SEARCH_EXPAND_ITEM