1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/18/10.1063/1.3253422
1.
1.J. Kido, H. Hayase, K. Hongawa, K. Nagai, and K. Okuyama, Appl. Phys. Lett. 65, 2124 (1994).
http://dx.doi.org/10.1063/1.112810
2.
2.M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, M. E. Thompson, and S. R. Forrest, Nature (London) 395, 151 (1998).
http://dx.doi.org/10.1038/25954
3.
3.T. Tsutsui, M. -J. Yang, M. Yahiro, K. Nakamura, T. Watanabe, T. Tsuji, Y. Fukuda, T. Wakimoto, and S. Miyaguchi, Jpn. J. Appl. Phys. 38, L1502 (1999).
http://dx.doi.org/10.1143/JJAP.38.L1502
4.
4.M. A. Baldo, S. Lemansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999).
http://dx.doi.org/10.1063/1.124258
5.
5.M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nature (London) 403, 750 (2000).
http://dx.doi.org/10.1038/35001541
6.
6.C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
http://dx.doi.org/10.1063/1.1409582
7.
7.S. -C. Lo, N. A. H. Male, J. P. J. Markham, S. W. Magennis, P. L. Burn, O. V. Salata, and I. D. W. Samuel, Adv. Mater. 14, 975 (2002).
8.
8.R. N. Bera, N. Cumpstey, P. L. Burn, and I. D. W. Samuel, Adv. Funct. Mater. 17, 1149 (2007).
http://dx.doi.org/10.1002/adfm.200600118
9.
9.Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature (London) 440, 908 (2006).
http://dx.doi.org/10.1038/nature04645
10.
10.X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan, and A. J. Heeger, Adv. Mater. 14, 581 (2002).
http://dx.doi.org/10.1002/1521-4095(20020418)14:8<581::AID-ADMA581>3.0.CO;2-B
11.
11.N. C. Giebink and S. R. Forrest, Appl. Phys. Lett. 89, 193502 (2006).
http://dx.doi.org/10.1063/1.2385840
12.
12.H. Nakanotani, S. Akiyama, D. Ohnishi, M. Moriwake, M. Yahiro, T. Yoshihara, S. Tobita, and C. Adachi, Adv. Funct. Mater. 17, 2328 (2007).
http://dx.doi.org/10.1002/adfm.200700069
13.
13.E. B. Namdas, A. Ruseckas, I. D. W. Samuel, S. -C. Lo, and P. L. Burn, J. Phys. Chem. B 108, 1570 (2004).
http://dx.doi.org/10.1021/jp035664k
14.
14.Y. Kawamura, J. Brooks, J. J. Brown, H. Sasabe, and C. Adachi, Phys. Rev. Lett. 96, 017404 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.017404
15.
15.J. C. Ribierre, A. Ruseckas, I. D. W. Samuel, K. Knights, S. V. Staton, N. Cumpstey, and P. L. Burn, Phys. Rev. Lett. 100, 017402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.017402
16.
16.J. Kalinowski, W. Stampor, J. Mezyk, M. Cocchi, D. Virgili, V. Fattori, and P. Di Marco, Phys. Rev. B 66, 235321 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.235321
17.
17.E. B. Namdas, A. Ruseckas, I. D. W. Samuel, S. -C. Lo, and P. L. Burn, Appl. Phys. Lett. 86, 091104 (2005).
http://dx.doi.org/10.1063/1.1867571
18.
18.J. Kalinowski, J. Mezyk, F. Meinardi, R. Tubino, M. Cocchi, and D. Virgili, J. Appl. Phys. 98, 063532 (2005).
http://dx.doi.org/10.1063/1.2060955
19.
19.R. J. Holmes, S. R. Forrest, T. Sajoto, A. Tamayo, P. I. Djurovich, and M. E. Thompson, Org. Electron. 7, 163 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.03.009
20.
20.S. Reineke, K. Walzer, and K. Leo, Phys. Rev. B 75, 125328 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.125328
21.
21.N. C. Giebink, Y. Sun, and S. R. Forrest, Org. Electron. 7, 375 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.04.007
22.
22.N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, Chem. Phys. Lett. 241, 89 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00584-Q
23.
23.G. J. Hedley, A. Ruseckas, Z. Liu, S. -C. Lo, P. L. Burn, and I. D. W. Samuel, J. Am. Chem. Soc. 130, 11842 (2008).
http://dx.doi.org/10.1021/ja8036383
24.
24.T. Förster, Ann. Phys. (Leipzig) 437, 55 (1948).
http://dx.doi.org/10.1002/andp.19484370105
25.
25.S. -C. Lo, E. B. Namdas, P. L. Burn, and I. D. W. Samuel, Macromolecules 36, 9721 (2003).
http://dx.doi.org/10.1021/ma030383w
26.
26.R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, J. Appl. Phys. 105, 053711 (2009).
http://dx.doi.org/10.1063/1.3079797
27.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/18/10.1063/1.3253422
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Absorption coefficient of IrG1 film (solid line) and photoluminescence spectrum of CBP film (dashed line). The inset shows chemical structures of CBP and IrG1, where -ethylhexyl. (b) Steady state PL spectra of IrG1:CBP (20:80 wt %) blend (solid line) and the transient PL spectrum of the same blend in the time interval from 10 to 20 ps (circles), emission at wavelengths shorter than 400 nm is absorbed by a cutoff filter.

Image of FIG. 2.

Click to view

FIG. 2.

PL decay of CBP in IrG1:CBP (20:80 wt %) blend detected in the spectral window between 390 and 460 nm (circles). The dashed line shows the simulated kinetics using the Förster formula for a direct energy transfer and the solid line is a fit to the data using the Smoluchowski equation, which gives . The fits are convolved with the instrument response function.

Image of FIG. 3.

Click to view

FIG. 3.

PL decays of the CBP neat film at different initial excitation densities. The solid lines are fits with a time-independent annihilation constant .

Loading

Article metrics loading...

/content/aip/journal/apl/95/18/10.1063/1.3253422
2009-11-03
2014-04-24

Abstract

Excitation energy transfer from host to guest is studied in spin-cast blends of -bis(-carbazolyl)biphenyl (CBP) and a phosphorescent -tris(2-phenylpyridyl)iridium(III)-cored dendrimer using time resolved fluorescence. The kinetics of energy transfer are consistent with homogeneous dispersion of the dendrimers in the CBP host. Diffusion-controlled singlet-singlet exciton annihilation is observed in the CBP host at moderate excitation densities, similar to those encountered in high brightnesslight-emitting devices and organic lasers. The results are important for organic lighting and the understanding of excitondiffusion in guest-host systems for electrophosphorescence.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/18/1.3253422.html;jsessionid=1kg4hjl74he3n.x-aip-live-01?itemId=/content/aip/journal/apl/95/18/10.1063/1.3253422&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/18/10.1063/1.3253422
10.1063/1.3253422
SEARCH_EXPAND_ITEM