1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Optical confirmation of biaxial nematic phase in a bent-core mesogen
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/18/10.1063/1.3255013
1.
1.M. J. Freiser, Phys. Rev. Lett. 24, 1041 (1970).
http://dx.doi.org/10.1103/PhysRevLett.24.1041
2.
2.G. R. Luckhurst, Thin Solid Films 393, 40 (2001).
http://dx.doi.org/10.1016/S0040-6090(01)01091-4
3.
3.R. Berardi, L. Muccioli, and C. Zannoni, J. Chem. Phys. 128, 024905 (2008).
http://dx.doi.org/10.1063/1.2815804
4.
4.H. Mori and P. J. Bos, SID Int. Symp. Digest Tech. Papers 29, 830 (1998).
http://dx.doi.org/10.1889/1.1833892
5.
5.J. Chen, K. -H. Kim, J. -J. Ryu, J. H. Souk, J. R. Kelly, and P. J. Bos, SID Int. Symp. Digest Tech. Papers 29, 315 (1998).
http://dx.doi.org/10.1889/1.1833756
6.
6.Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, Jpn. J. Appl. Phys., Part 1 37, 4822 (1998).
http://dx.doi.org/10.1143/JJAP.37.4822
7.
7.L. A. Madsen, T. J. Dingemans, M. Nakata, and E. E. Samulski, Phys. Rev. Lett. 92, 145505 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.145505
8.
8.B. R. Acharya, A. Primak, and S. Kumar, Phys. Rev. Lett. 92, 145506 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.145506
9.
9.K. Merkel, A. Kocot, J. K. Vij, R. Korlacki, G. H. Mehl, and T. Meyer, Phys. Rev. Lett. 93, 237801 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.237801
10.
10.L. J. Yu and A. Saupe, Phys. Rev. Lett. 45, 1000 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.1000
11.
11.K. Neupane, S. W. Kang, S. Sharma, D. Carney, T. Meyer, G. H. Mehl, D. W. Allender, S. Kumar, and S. Sprunt, Phys. Rev. Lett. 97, 207802 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.207802
12.
12.J. Lee, T. -K. Lim, W. -T. Kim, and J. Jin, J. Appl. Phys. 101, 034105 (2007).
http://dx.doi.org/10.1063/1.2433126
13.
13.R. Stannarius, J. Appl. Phys. 104, 036104 (2008).
http://dx.doi.org/10.1063/1.2963702
14.
14.V. Prasad, S. -W. Kang, K. A. Suresh, L. Joshi, G. Wang, and S. Kumar, J. Am. Chem. Soc. 127, 17224 (2005).
http://dx.doi.org/10.1021/ja052769n
15.
15.K. V. Le, M. Mathews, M. Chambers, J. Harden, Q. Li, H. Takezoe, and A. Jákli, Phys. Rev. E 79, 030701(R) (2009).
http://dx.doi.org/10.1103/PhysRevE.79.030701
16.
16.M. A. Bates, Chem. Phys. Lett. 437, 189 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.02.025
17.
17.R. Stannarius, A. Eremin, M. -G. Tamba, G. Pelzl, and W. Weissflog, Phys. Rev. E 76, 061704 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.061704
18.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/18/10.1063/1.3255013
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Molecular structure of PAL1. The three directors and their refractive indices for are denoted as , , and .

Image of FIG. 2.

Click to view

FIG. 2.

Configurations of cells used in optical study (a) homeotropic cell, cell , (b) homeotropic cell, antiparallel rubbing, cell . (c) Planar cell, antiparallel rubbing, cell (E.H.C. Japan). Arrows point to the rubbing direction.

Image of FIG. 3.

Click to view

FIG. 3.

Texture of the unrubbed homeotropic cell for temperatures of (a) 68°, (b) 62°, and (c) . Cell , , 120 Hz square wave, A denotes analyzer, P denotes polarizer, R denotes rubbing direction, and E denotes electric field.

Image of FIG. 4.

Click to view

FIG. 4.

Texture of rubbed homeotropic cell. Cell gap . [(a) and (b)] at , without field. [(e) and (f)] with , [(c) and (d)] at without field. [(g) and (h)] , with . 120 Hz square wave is used to drive the cell, distance between electrodes is .

Image of FIG. 5.

Click to view

FIG. 5.

Temperature dependence of the effective birefringence in a rubbed homeotropic cell using PEM without voltage.

Image of FIG. 6.

Click to view

FIG. 6.

Three dimensional temperature and voltage plots of PAL1 by PEM. (a) Rubbed and (b) unrubbed homeotropic cells.

Image of FIG. 7.

Click to view

FIG. 7.

Temperature dependence of the effective birefringence in a planar cell using PEM with and without voltage. The inset magnifies dotted rectangle in the figure.

Loading

Article metrics loading...

/content/aip/journal/apl/95/18/10.1063/1.3255013
2009-11-03
2014-04-17

Abstract

A bent-core mesogen with different end groups has been studied for different surface conditions in both planar and homeotropic cells using techniques for measuring biaxiality and optical switching. Biaxial nematic phase observed in between the uniaxial nematic and smectic phases is evidenced by a sharp increase in the biaxiality in a homeotropic cell measured using a photoelastic modulator. The material in this phase is switchable through the minor director with an in-plane electric field. In a planar cell, a step in the difference in the refractive indices resulting from the uniaxial to biaxial transition is also observed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/18/1.3255013.html;jsessionid=9i5ee4ssthkaj.x-aip-live-03?itemId=/content/aip/journal/apl/95/18/10.1063/1.3255013&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Optical confirmation of biaxial nematic (Nb) phase in a bent-core mesogen
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/18/10.1063/1.3255013
10.1063/1.3255013
SEARCH_EXPAND_ITEM