1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Chemical changes on the green emitter tris(8-hydroxy-quinolinato)aluminum during device aging of -structured organic light emitting diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/18/10.1063/1.3257380
1.
1.C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
2.
2.C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
3.
3.R. Meerheim, K. Walzer, M. Pfeiffer, and K. Leo, Appl. Phys. Lett. 89, 061111 (2006).
http://dx.doi.org/10.1063/1.2268354
4.
4.R. Meerheim, S. Scholz, S. Olthof, G. Schwartz, S. Reineke, K. Walzer, and K. Leo, J. Appl. Phys. 104, 014510 (2008).
http://dx.doi.org/10.1063/1.2951960
5.
5.D. Y. Kondakov, W. C. Lenhart, and W. F. Nichols, J. Appl. Phys. 101, 024512 (2007).
http://dx.doi.org/10.1063/1.2430922
6.
6.S. Scholz, K. Walzer, and K. Leo, Adv. Funct. Mater. 18, 2541 (2008).
http://dx.doi.org/10.1002/adfm.200700816
7.
7.S. Scholz, R. Meerheim, K. Walzer, and K. Leo, Proc. SPIE 69991B, 47 (2008).
8.
8.D. Kondakov, J. Appl. Phys. 104, 084520 (2008).
http://dx.doi.org/10.1063/1.3006890
9.
9.S. Scholz, R. Meerheim, B. Lüssem, and K. Leo, Appl. Phys. Lett. 94, 043314 (2009).
http://dx.doi.org/10.1063/1.3075607
10.
10.Y. Luo, H. Aziz, G. Xu, and Z. D. Popovic, Chem. Mater. 19, 2079 (2007).
http://dx.doi.org/10.1021/cm062621i
11.
11.V. V. Jarikov and D. Y. Kondakov, J. Appl. Phys. 105, 034905 (2009).
http://dx.doi.org/10.1063/1.3072622
12.
12.H. Aziz, Z. Popovic, S. Xie, A. -M. Hor, N. -X. Hu, C. Tripp, and G. Xu, Appl. Phys. Lett. 72, 756 (1998).
http://dx.doi.org/10.1063/1.120867
13.
13.Z. D. Popovic and H. Aziz, IEEE J. Sel. Top. Quantum Electron. 8, 362 (2002).
http://dx.doi.org/10.1109/2944.999191
14.
14.F. Papadimitrakopoulos, X. Zhang, D. L. Thomsen, III, and K. A. Higginson, Chem. Mater. 8, 1363 (1996).
http://dx.doi.org/10.1021/cm960152m
15.
15.S. Scholz, C. Corten, K. Walzer, D. Kuckling, and K. Leo, Org. Electron. 8, 709 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.06.002
16.
16.S. Scholz, Q. Huang, M. Thomschke, S. Olthof, P. Sebastian, K. Walzer, K. Leo, S. Oswald, C. Corten, and D. Kuckling, J. Appl. Phys. 104, 104502 (2008).
http://dx.doi.org/10.1063/1.3018716
17.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/18/10.1063/1.3257380
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

LDI-TOF-MS spectra of an aged OLED [(a), (c), (e), (g), (i), and (l)] and a non-IV-driven reference sample [(b), (d), (f), (h), (k), and (m)]. Spectra (a) and (b) show the full spectra of both diodes, where the other spectra show details from them. (c) and (d) prove the presence of BPhen in the samples after the removing of the Al-top contact. (e) shows the proposed reaction products between and BPhen at 648.23 amu as well as the BPhen dimer at 664.3 amu (Ref. 6). (g) indicates that a dimerization of is not detectable at 774 amu as proposed from Ref. 15, (i) shows a reformation of Cs and BPhen to a combined complex at 796.5 amu. Spectrum (l) shows the fragment, a precursor for the complex visible in (e) and/or a degradation product itself.

Image of FIG. 2.

Click to view

FIG. 2.

Proposed fragmentation (a) of after excitation and further complexation (b) of the fragment with the HBL BPhen by forming a charge transfer complex or a more stable complex with coordinated bonds.

Loading

Article metrics loading...

/content/aip/journal/apl/95/18/10.1063/1.3257380
2009-11-06
2014-04-25

Abstract

Metal organic fluorescent and phosphorescent emitters are widely used in organic light emitting devices (OLEDs). Iridium-based triplet emitters are known to undergo chemical reactions with other materials during OLEDaging. The material tris(8-hydroxy-quinolinato)aluminum , which is widely used as electron transporting material and green fluorescent emitter, degrades mainly during hole transport. We investigate the chemical changes in during device aging: using laser desorption ionization time-of-flight mass spectrometry, we study the reaction products found in degraded OLEDs. Similar to the reactions known from the phosphorescent iridium-based emitters, undergoes a dissociation and further reaction with the hole blocking material 4,7-diphenyl-1,10-phenanthroline.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/18/1.3257380.html;jsessionid=ucfjxf6jp5be.x-aip-live-01?itemId=/content/aip/journal/apl/95/18/10.1063/1.3257380&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Chemical changes on the green emitter tris(8-hydroxy-quinolinato)aluminum during device aging of p-i-n-structured organic light emitting diodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/18/10.1063/1.3257380
10.1063/1.3257380
SEARCH_EXPAND_ITEM