1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Studies of charge transfer processes across donor-acceptor interface using a field effect transistor geometry
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/18/10.1063/1.3259629
1.
1.S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics 3, 297 (2009).
http://dx.doi.org/10.1038/nphoton.2009.69
2.
2.H. Xin, F. S. Kim, and S. A. Jenekhe, J. Am. Chem. Soc. 130, 5424 (2008).
http://dx.doi.org/10.1021/ja800411b
3.
3.N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992).
http://dx.doi.org/10.1126/science.258.5087.1474
4.
4.A. C. Morteani, P. Sreearunothai, L. M. Herz, R. H. Friend, and C. Silva, Phys. Rev. Lett. 92, 247402 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.247402
5.
5.S. A. Jenekhe and J. A. Osaheni, Science 265, 765 (1994).
http://dx.doi.org/10.1126/science.265.5173.765
6.
6.V. Podzorov and M. E. Gershenson, Phys. Rev. Lett. 95, 016602 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.016602
7.
7.S. Barth, H. Bassler, H. Rost, and H. H. Horhold, Phys. Rev. B 56, 3844 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.3844
8.
8.A. G. Manoj, A. A. Alagiriswamy, and K. S. Narayan, J. Appl. Phys. 94, 4088 (2003).
http://dx.doi.org/10.1063/1.1600829
9.
9.C. Waldauf, P. Schilinsky, M. Perisutti, J. Haush, and C. J. Brabec, Adv. Mater. 15, 2084 (2003).
http://dx.doi.org/10.1002/adma.200305623
10.
10.K. H. Yim, Z. Zheng, Z. Lang, R. H. Friend, W. T. S. Huck, and J. S. Kim, Adv. Funct. Mater. 18, 1012 (2008).
http://dx.doi.org/10.1002/adfm.200701321
11.
11.K. S. Narayan and N. Kumar, Appl. Phys. Lett. 79, 1891 (2001).
http://dx.doi.org/10.1063/1.1404131
12.
12.T. P. I. Saragi, M. Fetten, and J. Salbeck, Appl. Phys. Lett. 90, 253506 (2007).
http://dx.doi.org/10.1063/1.2750387
13.
13.See EPAPS supplementary material at http://dx.doi.org/10.1063/1.3259629 for decay constants and transient measurement schematics.[Supplementary Material]
14.
14.S. Dutta and K. S. Narayan, Phys. Rev. B 68, 125208 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.125208
15.
15.V. D. Mihailetchi, J. K. J. V. Duren, P. W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, and M. J. Wienk, Adv. Funct. Mater. 13, 43 (2003).
http://dx.doi.org/10.1002/adfm.200390004
16.
16.P. A. C. Quist, T. J. Savenije, J. M. Schins, J. E. Kroeze, P. A. Rijkers, and L. D. A. Siebbeles, Phys. Rev. B 75, 195317 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.195317
17.
17.L. Tan, M. D. Curtis, and A. H. Francis, Chem. Mater. 16, 2134 (2004).
http://dx.doi.org/10.1021/cm035102d
18.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/18/10.1063/1.3259629
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) characteristics of single layer PCBM based FET at different (accumulation mode), Inset is of single layer PCBM FET and DA-FET and the schematic of DA-FET. (b) Transfer characteristics of DA-FET upon photoexciting (cw, 532 nm) at different intensities and ( 100 V, 60 V). Inset is intensity-modulated spectra at 13 Hz, 40 V, 100 V.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Transient response of DA-FET to a single pulse photoexcitation (10 ns, 532 nm, ) at 100 V and different . Note that the device used here is different from the device in Fig. 1 with a lower on/off ratio and lower and the absence of transient signal from PCBM FET. Inset is schematic of a representative profile indicating distinct regimes as described in the text. (b) in expanded scale at different upon pulsed-photoexcitation, are the decay constant. The data was acquired at time interval of 40 ns using a scope ( input impedance) triggered by the laser pulse. (c) Drift-diffusion solution of calculated at different cross-section of the sample at different interval of time. At corresponds to initial photogenerated charges at the D-A interface.

Loading

Article metrics loading...

/content/aip/journal/apl/95/18/10.1063/1.3259629
2009-11-05
2014-04-21

Abstract

The existence of donor-type polymerfield effect transistors(FETs), which are FETs exhibiting p-type characteristics and acceptor-type molecular FETs with n-type characteristics, provide an interesting possibility of a combined active bilayer system, especially under photoexcitation. We present a device structure and methodology that is conducive to study donor-acceptor interfacial processes using a FET platform. The changes in FETcharacteristics initiated by the photogenerated carriers in the donor coated acceptor device are studied using steady state and pulsed photoexcitation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/18/1.3259629.html;jsessionid=twwklyggo3rs.x-aip-live-02?itemId=/content/aip/journal/apl/95/18/10.1063/1.3259629&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Studies of charge transfer processes across donor-acceptor interface using a field effect transistor geometry
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/18/10.1063/1.3259629
10.1063/1.3259629
SEARCH_EXPAND_ITEM