1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Stable and reversible optoelectrical dual-mode data storage based on a ferrocenlylspiropyran molecule
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/18/10.1063/1.3259647
1.
1.S. Kawata and Y. Kawata, Chem. Rev. 100, 1777 (2000).
http://dx.doi.org/10.1021/cr980073p
2.
2.W. F. Yuan, L. Sun, H. H. Tang, Y. Q. Wen, G. Y. Jiang, W. H. Huang, L. Jiang, Y. L. Song, H. Tian, and D. B. Zhu, Adv. Mater. 17, 156 (2005).
http://dx.doi.org/10.1002/adma.200400953
3.
3.E. Ishow, A. Brosseau, G. Clavier, K. Nakatani, R. B. Pansu, J. -J. Vachon, P. Tauc, D. Chauvat, C. R. Mendonca, and E. Piovesan, J. Am. Chem. Soc. 129, 8970 (2007).
http://dx.doi.org/10.1021/ja0735756
4.
4.C. Lee, Y. Kang, K. Lee, S. R. Kim, D. J. Won, J. S. Noh, H. K. Shin, C. K. Song, Y. S. Kwon, H. M. So, and J. Kim, Curr. Appl. Phys. 2, 39 (2002);
http://dx.doi.org/10.1016/S1567-1739(01)00094-3
4.L. H. Xie, Q. D. Ling, X. Y. Hou, and W. Huang, J. Am. Chem. Soc. 130, 2120 (2008).
http://dx.doi.org/10.1021/ja076720o
5.
5.S. G. Hahm, S. Choi, S. -H. Hong, T. J. Lee, S. Park, D. M. Kim, W. -S. Kwon, K. Kim, O. Kim, and M. Ree, Adv. Funct. Mater. 18, 3276 (2008).
http://dx.doi.org/10.1002/adfm.200800758
6.
6.H. Li, Y. Q. Wen, P. W. Li, R. M. Wang, G. Li, Y. Ma, L. M. Yang, Y. L. Song, Q. L. Yang, and D. B. Zhu, Appl. Phys. Lett. 94, 163309 (2009).
http://dx.doi.org/10.1063/1.3125257
7.
7.J. Y. Ouyang, C. W. Chu, C. R. Szmanda, L. P. Ma, and Y. Yang, Nature Mater. 3, 918 (2004);
http://dx.doi.org/10.1038/nmat1269
7.C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, and J. R. Heath, Science 289, 1172 (2000).
http://dx.doi.org/10.1126/science.289.5482.1172
8.
8.H. Tian and Q. -C. Wang, Chem. Soc. Rev. 35, 361 (2006).
http://dx.doi.org/10.1039/b512178g
9.
9.G. Y. Jiang, Y. L. Song, Y. Q. Wen, W. F. Yuan, H. M. Wu, Z. Yang, A. D. Xia, M. Feng, S. X. Du, H. J. Gao, L. Jiang, and D. B. Zhu, ChemPhysChem 6, 1478 (2005).
http://dx.doi.org/10.1002/cphc.200500184
10.
10.S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
11.
11.M. E. Itkis, X. Chi, A. W. Cordes, and R. C. Haddon, Science 296, 1443 (2002).
http://dx.doi.org/10.1126/science.1071372
12.
12.F. M. Raymo and S. Giordani, J. Am. Chem. Soc. 123, 4651 (2001).
http://dx.doi.org/10.1021/ja005699n
13.
13.S. Nagashima, M. Murata, and H. Nishihara, Angew. Chem., Int. Ed. 45, 4298 (2006).
http://dx.doi.org/10.1002/anie.200600535
14.
14.E. Peris, Coord. Chem. Rev. 248, 279 (2004).
http://dx.doi.org/10.1016/j.ccr.2004.01.006
15.
15.T. L. Choi, K. H. Lee, W. J. Joo, S. Lee, T. W. Lee, and M. Y. Chae, J. Am. Chem. Soc. 129, 9842 (2007).
http://dx.doi.org/10.1021/ja0717459
16.
16.A. Bandhopadhyay and A. J. Pal, J. Phys. Chem. B 107, 2531 (2003).
http://dx.doi.org/10.1021/jp027369q
17.
17.Q. Lai, Z. Zhu, Y. Chen, S. Patil, and F. Wudl, Appl. Phys. Lett. 88, 133515 (2006).
http://dx.doi.org/10.1063/1.2191874
18.
18.S. L. Lim, N. -J. Li, J. -M. Lu, Q. -D. Ling, C. X. Zhu, E. -T. Kang, and K. G. Neoh, A. C. S. Appl. Mater. & Interfaces 1, 60 (2009).
http://dx.doi.org/10.1021/am800001e
19.
19.M. Surin, P. Sonar, A. C. Grimsdale, K. Mullen, S. D. Feyter, S. Habuchi, S. Sarzi, E. Braeken, A. V. Heyen, M. V. d. Auweraer, F. C. D. Schryver, M. Cavallini, J. -F. Moulin, F. Biscarini, C. Femoni, R. Lazzaroni, and P. Leclere, J. Mater. Chem. 17, 728 (2007).
http://dx.doi.org/10.1039/b610132a
20.
20.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
21.
21.W. J. Hehre, L. Radom, P. V. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
22.
22.See EPAPS supplementary material at http://dx.doi.org/10.1063/1.3259647 for experimental details, UV-vis spectra, and XPS measurement.[Supplementary Material]
23.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/18/10.1063/1.3259647
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The structure and photochemical isomerization of SPFc. Right: Photomerocyanine form.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Sequential spectral changes of SPFc in dichloromethane : initial state (black line), after irradiation with 365 nm light for 1 min (red line), and followed by irradiation with 586 nm light for 5 min (green line). (b) Optical recording pattern on SPFc-doped PMMA film (1:20 by weight). (c) Fatigue resistance of SPFc-PMMA film under the recording-erasing conditions. In each cycle, the film was irradiated for 5 min with UV light (365 nm) and the 10 min with visible light (586 nm). The absorbance at was monitored.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Macroscopic characteristics of the thin film, exhibiting the conductance transition from the high-(OFF state) to low-resistance state in curve I, the memory effect of the low-resistance state (ON state) in curve II, and the recovery of the high-resistance state with the application of a reverse voltage scan in curves III and IV, respectively. (b) The logarithm of the ON and OFF state current ratio as a function of the applied voltage. (c) Long-term response of the ON state under an electric field of 0.5 V.

Image of FIG. 4.

Click to view

FIG. 4.

STM images of typical information dots pattern and the corresponding curves. (a) Recording pattern composed of four information dots: pulsed voltage, ; 4 ms. [(b) and (c)] Erasing one and two dots, respectively: pulsed voltage, −2.96 V; 4 ms. (d) Rewriting one information dot: pulsed voltage, ; 4 ms. (e) Typical STM curves in the unrecorded (curve I) and recorded region (curve II).

Image of FIG. 5.

Click to view

FIG. 5.

(a) Charge density distribution of SPFc. (b) HOMO and (c) LUMO of the SPFc molecule.

Loading

Article metrics loading...

/content/aip/journal/apl/95/18/10.1063/1.3259647
2009-11-05
2014-04-17

Abstract

A spiropyran molecule bonded with ferrocene (SPFc) was synthesized as data storage medium. Optical recording pattern was obtained through the reversible modulation of UV and visible light on the SPFc film, which exhibited good reversibility compared with the spiropyran without ferrocene moiety. In addition, the SPFc thin film also possessed reversible electrical switching property with high ON/OFF ratio, low threshold voltage, and long retention time. Accordingly, reliable, stable, and reversible nanoscale data storage was achieved on the SPFc thin film by scanning tunneling microscopy. The results will be significant to develop multifunctional molecule and reversible multimode data storage.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/18/1.3259647.html;jsessionid=3knestcaaqlnt.x-aip-live-02?itemId=/content/aip/journal/apl/95/18/10.1063/1.3259647&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Stable and reversible optoelectrical dual-mode data storage based on a ferrocenlylspiropyran molecule
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/18/10.1063/1.3259647
10.1063/1.3259647
SEARCH_EXPAND_ITEM